
Lecture 3. Dependent Random Choice

Theorem 3.1. Let H be a bipartite graph with bipartition (A,B) such that every vertex in A has
degree at most r. Then there exists a constant C = CH such that

ex(n,H) ≤ Cn2−1/r

Remark 3.2. This theorem was first proved by Füredi (1991) and then was reproved by Alon,
Krivelevich and Sudakov (2002).

We will give the proof of Alon-Krivelevich-Sudakov, which has been extended to a powerful
probabilistic tool called “dependent random choice”. The main idea of this is the following lemma:
If G has many many edges, then one can find a large subset A in G such that all small subsets of
A have many common neighbors.

Definition 3.3. For S ⊆ V (G), N(S) = {w ∈ V (G) : ws ∈ E(G) for every s ∈ S}.

Lemma 3.4 (Dependent random choice). Let u, n, r,m, t ∈ N and a real number α ∈ (0, 1) be
such that

nαt −
(
n

r

)(m
n

)t
≥ u

Then every n-vertex graph G with at least α
2n

2 edges contains a subset U of at least u vertices
such that every r-element subset S of U has at least m common neighbors.

Proof. Let T be a set of t vertices chosen uniformly at random from V (G) (allowing repetition).
Let A = N(T ). Then

E[|A|] =
∑
v∈V

P[v ∈ A] =
∑
v∈V

P[T ⊆ N(v)] =
∑
v∈V

(
d(v)

n

)t
≥ n

(
1

n

∑
v∈V

d(v)

n

)t
≥ nαt.

Call an r-element subset S ⊆ V (G) bad if |N(S)| < m. Given a bad r-set S ⊆ V (G), we have

P[S ⊆ A] = P[T ⊆ N(S)] =

(
|N(S)|
n

)t
<
(m
n

)t
.

Let s be the number of bad r-subsets in A, so

E[s] <

(
n

r

)(m
n

)t
,

E[|A| − s] ≥ nαt −
(
n

r

)(m
n

)t
≥ u.

Thus, there exists a choice of T such that A = N(T ) satisfies that |A|− s ≥ u. Let U be obtained
from A by deleting one vertex from each bad r-element subset in A. Then we have that |U | ≥ u
and U satisfies the condition.

Now we can prove the Theorem 3.1.
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Proof. (Theorem 3.1) Let H be a bipartite graph with bipartition (A,B) such that every vertex
in A has degree at most r. We want to show ex(n,H) ≤ Cn2−1/r, where C = CH is a constant.
Let G be any n-vertex graph with at least Cn2−1/r edges, where C satisfies

n(2Cn−1/r)r −
(
n

r

)(
|A|+ |B|

n

)r
≥ |B|.

By Lemma 3.4, taking u = |B|, m = |A|+ |B|, t = r, α = 2Cn−1/r, we see

nαt −
(
n

r

)(m
n

)t
≥ u.

So there exists a subset U with |U | ≥ u such that any r-element subsets of U has at least
m = |A|+ |B| common neighbors.

We label A = {v1, v2, ..., va} and B = {u1, u2, ..., ub}. We find any one-to-one mapping
φ : B → U , ui 7→ φ(ui). Next, we want to extend this φ from B to A ∪ B and then we can
find a copy of H in G. Suppose for A′ = {v1, v2, ..., vs}, we have φ : A′ ∪ B → V (G) such that
H[A′ ∪ B] ⊆ G[φ(A′) ∪ φ(B′)]. Consider vs+1 and NH(vs+1) ⊆ B, we have that NH(vs+1) ≤ r.
We consider φ(NH(vs+1)) ⊆ U of size at most r. By the property of U , φ(NH(vs+1)) has at least
|A|+ |B| common neighbors in G. Then we can get a vertex φ(vs+1) which is a common neighbor
of φ(NH(vs+1)) but is not in φ(A′ ∪ B). Repeatedly, we can extend φ to be φ : A ∪ B → V (G)
such that φ(A ∪B) is a copy of H, a contradiction.

A subdivision of a graph H is obtained from H by replacing each edge xy in H with a path
xPxyy such that all Pxys are distinct.

Theorem 3.5. Any n-vertex graph G with at least εn2 edges has a subdivision of a clique of size
at least ε3/2n1/2.

Proof. This is left to be an exercise.

Lemma 3.6 (Two-sided version of dependent random choice). Let G be a bipartite graph on 2n
vertices and with average degree d. Let U, V be two parts of G with |U | = |V | = n. If r, s, t ∈ N
such that

nr−s+s
2
d−s

2
(t− 1)s <

1

4
.

Then there exist X ⊆ U and Y ⊆ V of size at least 4−1/sn1−sds satisfying that every r-subset in
X(or in Y ) has a least t common neighbors in G(X,Y ).

A graph H is r-degenerate if any one of its subgraphs contains a vertex of degree at most r.

Theorem 3.7. Let r ≥ 2 and F be an r-degenerate bipartite graph whose largest part has size t.
Then there exists a constant C = C(F ) such that

ex(n, F ) ≤ C(t− 1)
1
2rn2−

1
4r .
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Proof. Let C be the constant such that (C2 )−4r
2
< 1

4 . Let G be a (2n)-vertex graph with e(G) >

C(t − 1)
1
2rn2−

1
4r . Thus, its average degree d > C

2 (t − 1)
1
2rn1−

1
4r . We know that there exists a

subgraph G′ of G, which is bipartite with parts U, V of size n and e(G′) ≥ e(G)/2. Let s = 2r.
It is easy to see that

nr−s+s
2
d−s

2
(t− 1)s <

1

4
,

since the choice of C and the inequality implies 4−1/sn1−sds ≥ t. By Lemma 3.6, we obtain that
there exist X ⊆ U and Y ⊆ V of size at least 4−1/sn1−sds satisfying that every r-subset in X(or
in Y ) has a least t common neighbors in G(X,Y ).

Let F be a bipartite graph on partition A ∪ B. Our goal is to construct an embedding
f : V (F )→ V (G) by placing images of vertices from A into X, and images of vertices of B into
Y . To construct the desired embedding, we proceed according to the chosen order (v1, . . . , vh)
of the vertices of F . If the current vertex vi ∈ V (F ), i ∈ [h] is a vertex from A, we first locate
the images f(vj), j < i, of the already embedded neighbours of vi in B. The set {f(vj) : j <
i, (vj , vi) ∈ E(H)} is a subset of Y of cardinality at most r. It therefore has at least t common
neighbours in X, and obviously not all of them have already been used in the embedding. We
pick one unused vertex w and set f(vi) = w. If vi ∈ B, we can repeat the above argument,
interchanging the roles of X and Y . We can find a copy of F in (X,Y ), a contradiction. So, we
have

ex(n, F ) ≤ C(t− 1)
1
2rn2−

1
4r .

Corollary 3.8. For any bipartite graph F , let dF = maxF ′⊆F
2e(F ′)
v(F ′) . Then

ex(n, F ) = O(n
2− 1

4bdF c ) = O(n
2− 1

4dF ).

Hint: It holds since F is bdF c-degenerate.

Corollary 3.9. For bipartite graph F , let

cF = min
F ′⊆F

v(F ′)

e(F ′)

and

c∗F = min
F ′⊆F,e(F ′)≥2,δ(F ′)≥1

v(F ′)− 2

e(F ′)− 1
.

Then
ex(n, F ) = Ω(n2−c

∗
F ) ≥ Ω(n2−cF ).
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