Lecture 3. Dependent Random Choice

Theorem 3.1. Let H be a bipartite graph with bipartition (A, B) such that every vertez in A has
degree at most r. Then there exists a constant C = Cp such that

ex(n, H) < Cn?~ V"

Remark 3.2. This theorem was first proved by Fiiredi (1991) and then was reproved by Alon,
Krivelevich and Sudakov (2002).

We will give the proof of Alon-Krivelevich-Sudakov, which has been extended to a powerful
probabilistic tool called “dependent random choice”. The main idea of this is the following lemma:
If G has many many edges, then one can find a large subset A in G such that all small subsets of
A have many common neighbors.

Definition 3.3. For S C V(G), N(S) = {w € V(G) : ws € E(G) for every s € S}.

Lemma 3.4 (Dependent random choice). Let u,n,r,m,t € N and a real number o € (0,1) be

such that
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Then every n-vertex graph G with at least %n2 edges contains a subset U of at least u vertices
such that every r-element subset S of U has at least m common neighbors.

Proof. Let T be a set of t vertices chosen uniformly at random from V(G) (allowing repetition).
Let A= N(T). Then

E[|A]=> PuecAl=> PITCN@)]=> (‘l(n“)) >n (i > d(n”)> > nat.
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Call an r-element subset S C V(G) bad if [N(S)| < m. Given a bad r-set S C V(G), we have

P[S C A] = P[T' C N(S)] = ('Ms)’)t < (T)t.

n n

Let s be the number of bad r-subsets in A, so
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E[|A| - 5] > na — (ﬁ) (%)t > u.

Thus, there exists a choice of T" such that A = N(T') satisfies that |A| —s > u. Let U be obtained
from A by deleting one vertex from each bad r-element subset in A. Then we have that |U| > u
and U satisfies the condition. 1

Now we can prove the Theorem 3.1.



Proof. (Theorem 3.1) Let H be a bipartite graph with bipartition (A, B) such that every vertex
in A has degree at most r. We want to show ex(n, H) < Cn?>~'/", where C' = Cy is a constant.
Let G be any n-vertex graph with at least Cn2~1/" edges, where C satisfies

r

By Lemma 3.4, taking u = |B|, m = |A| 4 |B|, t =7, a = 2Cn~ /" we see

nat — (Z) (%)t > u.

So there exists a subset U with |[U| > u such that any r-element subsets of U has at least
m = |A| + | B| common neighbors.

We label A = {v1,vs,...,0,} and B = {uj,u,...,up}. We find any one-to-one mapping
¢: B — U, uj — ¢(u;). Next, we want to extend this ¢ from B to AU B and then we can
find a copy of H in G. Suppose for A" = {v1,v9,...,v5}, we have ¢ : A’ U B — V(@) such that
H[A"U B] C G[p(A") U ¢(B')]. Consider vsy1 and Ny (vsy1) € B, we have that Ny (vsy1) < 7.
We consider ¢(Ng(vsy1)) C U of size at most r. By the property of U, ¢(Ng(vs+1)) has at least
|A| +|B| common neighbors in G. Then we can get a vertex ¢(vs41) which is a common neighbor
of ¢(Ng(vs+1)) but is not in ¢p(A’ U B). Repeatedly, we can extend ¢ to be ¢ : AUB — V(QG)
such that ¢(A U B) is a copy of H, a contradiction.

|

A subdivision of a graph H is obtained from H by replacing each edge xy in H with a path
2 Ppyy such that all P,,s are distinct.

Theorem 3.5. Any n-vertex graph G with at least en® edges has a subdivision of a clique of size
at least e3/2n1/2,

Proof. This is left to be an exercise. |

Lemma 3.6 (Two-sided version of dependent random choice). Let G be a bipartite graph on 2n
vertices and with average degree d. Let U,V be two parts of G with |U| = |V|=mn. Ifr,s,t € N

such that 1
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Then there exist X CU andY C 'V of size at least 4~ Y/*n1=3d® satisfying that every r-subset in
X (orin'Y') has a least t common neighbors in G(X,Y).

A graph H is r-degenerate if any one of its subgraphs contains a vertex of degree at most r.

Theorem 3.7. Let r > 2 and F be an r-degenerate bipartite graph whose largest part has size t.
Then there exists a constant C' = C(F') such that

1

ex(n, F) < C(t — 1)zrn2 ar,



Proof. Let C be the constant such that (%)*4’“2 < 1. Let G be a (2n)-vertex graph with e(G) >
C(t — 1)%7127&. Thus, its average degree d > %(t - 1)%7117&. We know that there exists a
subgraph G’ of G, which is bipartite with parts U,V of size n and e(G’) > e(G)/2. Let s = 2r.

It is easy to see that
1

nrferstfsQ (t o 1)3 < -,
4
since the choice of C' and the inequality implies 4~ Y/$n1=5¢% > ¢. By Lemma 3.6, we obtain that
there exist X C U and Y C V of size at least 4~ 1/5n'=5d® satisfying that every r-subset in X (or
in Y') has a least ¢ common neighbors in G(X,Y).

Let F be a bipartite graph on partition A U B. Our goal is to construct an embedding
f:V(F)— V(G) by placing images of vertices from A into X, and images of vertices of B into
Y. To construct the desired embedding, we proceed according to the chosen order (vi,...,vp)
of the vertices of F. If the current vertex v; € V(F),i € [h] is a vertex from A, we first locate
the images f(v;), j < i, of the already embedded neighbours of v; in B. The set {f(v;) : j <
i,(vj,v;) € E(H)} is a subset of Y of cardinality at most r. It therefore has at least ¢ common
neighbours in X, and obviously not all of them have already been used in the embedding. We
pick one unused vertex w and set f(v;) = w. If v; € B, we can repeat the above argument,
interchanging the roles of X and Y. We can find a copy of F' in (X,Y’), a contradiction. So, we
have

ex(n, F) < C(t — 1)%712_%.

Corollary 3.8. For any bipartite graph F, let dp = maxp/cp 21)6((5)). Then

1
ex(n, F) = O(n27m) = 0(n2*4dp ).
Hint: It holds since F' is |dr]-degenerate.

Corollary 3.9. For bipartite graph F, let

()
Cp = 1Iin
F T FicE e(FY)
and
* . ’U(FI) -2
Cp = min Eea—
E prcrer>2,5r>1 e(F') — 1
Then

ex(n, F) = Q(n?=°F) > Q(n?=r).
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