
Lecture 2. Random Algebraic Constructions

In this lecture, we use random algebraic/polynomial construction to prove the following result,
which gives a weaker bound than Theorem 1.10.

Theorem 2.1. For any s, there exists C = C(s) such that for any t ≥ C, ex(n,Ks,t) =

Ωs,t(n
2− 1

s ).

Proof. Let q be a prime power, and Fq be the field of order q. Let s ≥ 4 be fixed and q � s. Let
d = s2 − s+ 2, and n = qs.

Definition 2.2. Let ~X = {x1, x2, ..., xs} ∈ F sq and ~Y = {y1, y2, ..., ys} ∈ F sq . Let P be all

polynomials f( ~X, ~Y ) of degree at most d in each of ~X and ~Y , that is,

f( ~X, ~Y ) =
∑
(~a,~b)
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over all possible choices that
∑

i∈[s] ai ≤ d and
∑

j∈[s] bj ≤ d, where α
~a,~b
∈ Fq.

We choose a polynomial f ∈ P randomly at uniform and use it to define a bipartite graph Gf
on partition (F sq , F

s
q ) with edge set {( ~X, ~Y ) : f( ~X, ~Y ) = 0}. Note that v(Gf ) = 2qs = 2n. Then

by the linearity of expectation, E[e(Gf )] = n2/q = n2−1/s.

Lemma 2.3. For any ~u,~v ∈ F sq , P[f(~u,~v) = 0] = 1/q.

Lemma 2.4. Suppose r, s ≤ min{√q, d}. Let U ⊆ F sq and V ⊆ F sq be sets with |U | = s and
|V | = r. Then

P[f(~u,~v) = 0 for all ~u ∈ U, and ~v ∈ V ] = 1/qsr.

Fix U ⊆ F sq with |U | = s. Let I(~v) = 1 if ~v is adjacent to any ~u ∈ U, and otherwise I(~v) = 0.
Let XU = |N(U)|. Then XU =

∑
~v I(~v). We have

E[Xd
U ] = E[(

∑
~v∈F s

q

I(~v))d] =
∑

~v1,··· , ~vd∈F s
q

E[I(~v1)I(~v2) · · · I(~vd)] =
∑

1≤r≤d

(
qs

r

)
1

qrs
Mr

≤
∑
r≤d

Mr ,M,

where Mr is defined to the number of surjective mappings from [d] to [r].

Lemma 2.5. For all s, d, there exists a constant C such that if f1(~Y ), f2(~Y ), ..., fs(~Y ) are poly-
nomials over Y ∈ F sq of degree at most d, then

{~y ∈ F sq : f1(~y) = f2(~y) = ... = fs(~y) = 0}

has size either at most C or at least q − C√q ≥ q/2.

By lemma 2.5, if XU > C, then XU > q/2 implies

P[XU > C] = P[XU ≥
q

2
] = P[Xd

U ≥ (
q

2
)d] ≤

E[Xd
U ]

(q/2)d
≤ M

(q/2)d
.
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We say a set U of s vertices is bad if XU > C. Let u be the number of bad sets U of size s. So
we have E[u] ≤

(
qs

s

)
M

(q/2)d
= O(qs−2) and E[e(Gf )− nu] ≥ n2

q − nO(qs−2) ≥ n2

2q = 1
2n

2−1/s. Take

such a Gf and remove a vertex from every such s-subset to create a new graph G′. We see that
G′ is Ks,C+1-free, v(G′) ≤ 2n, and

e(G′) ≥ e(G)− u · n ≥ n2

q
−O(qs−2)n = (1− o(1))n2−

1
s .

Theorem 2.6 (Bukh-Conlon). For any rational number r ∈ (1, 2), there is a family of graphs Fr
such that ex(n,Fr) = Θ(nr).

Given a rooted tree T with a set R of roots, then pth power T p of T is the family of graphs
consisting of all possible unions of p distinct labelled copies of T , each of which agree on R.

Definition 2.7. The density of a rooted tree (T,R) is defined by

ρT =
e(T )

v(T )− |R|
.

For any S ⊆ V (T ) \R, define

ρS =
The number of edges incident to S

|S|
.

A rooted tree (T,R) is balanced if for any S ⊆ V (T ) \R, ρS ≥ ρT .

Theorem 2.8 (Bukh-Conlon). For large p, ex(n, T p) = Θ(n2−1/ρT ).
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