
Lecture 4. Lower bounds on Ramsey numbers

4.1 Lovász Local Lemma

Theorem 4.1 (Lovász Local Lemma (Symmetric Version)). Let {Ai}i∈[k] be a family of random
events. For any i, P[Ai] ≤ p. Any event is independent of all other events except for d of them.
If ep(d− 1) < 1, then the probability that all events’ complements occur simultaneously is greater
than 0, that is:

P
[⋂

Aci

]
> 0.

We focus on the asymmetric version of the Lovász Local Lemma, which is stronger than the
symmetric version. Firstly, we define the following auxiliary graph.

Definition 4.2. Let A = {A1, . . . , Ak} be a family of random events in the probability space Ω.
Let D := DA be the dependence graph with vertex set V (D) = A and edge set E(D) = {AiAj :
Ai and Aj are dependent for each i, j ∈ [k]}.

Theorem 4.3 (Lovász Local Lemma (Asymmetric Version)). Given a probability space (Ω,P),
the event collection A and the dependence graph D in Definition 4.2. Denote the neighborhood
set of Ai in D by N(Ai). If there exists a mapping f : A → [0, 1) satisfying that

P[Ai] ≤ f(Ai)
∏

B∈N(Ai)

(1− f(B))

holds for each Ai ∈ A, then the following holds:

P
[⋂

Aci

]
> 0.

4.2 Applications of Lovász Local Lemma

The Ramsey number r(k, `) is the smallest integer N such that any red-blue edge-coloring of KN

contains a red Kk or a blue K`.
Remark:

• Ramsey’s Theorem [3]: The Ramsey number exists.

• Erdős and Szekeres [2]: r(k, `) ≤
(
k+`−2
k−1

)
. If k = `, then this yields r(k, k) ≤ 4k.

• Campos, Griffiths, Morris and Sahasrabudhe [1]: There exists ε > 0 such that r(k, k) ≤
(4− ε)k.

Theorem 4.4.

r(3, `) = Ω

(
`2

log2 `

)
.

Proof. Consider a random edge-coloring of the complete graph Kn, where each edge is colored
red with probability p and blue with probability 1− p independently. Our goal is to obtain that
with positive probability there is a coloring without a red triangle and without a blue K`, since
this would establish the lower bound r(3, `) > n.

For each 3-element set T ⊆ [n], let AT be the event that T induces a red K3. Note that for
each T , we have P[AT ] = p3. For each `-element set S ⊆ [n], let BS be the event that S induces
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a blue K`. Note that for each `, we have P[BS ] = (1 − p)(
`
2). Let us now define a dependence

graph D for these events. We join two events of the form AT or BS , if the corresponding sets S
or T share an edge. Now we can bound the degrees in this graph,{

deg(AT ) ≤
(
3
2

)
(n− 3) +

(
3
2

)(
n−3
`−2
)
≤ 3n+

(
n
`

)
for each AT ,

deg(BS) ≤
(
`
2

)
n+

(
`
2

)(
n−3
`−2
)
≤
(
`
2

)
n+

(
n
`

)
for each BS .

Define a mapping f : {AT : T ∈
(
[n]
3

)
} ∪ {BS : S ∈

([n]
`

)
} → [0, 1) such that x := f(AT )

and y := f(BS). In order to use Lovász Local Lemma, we need to find positive real numbers
x, y ∈ (0, 1) such that {

p3 ≤ x(1− x)3n(1− y)(
n
`),

(1− p)(
`
2) ≤ y(1− x)n(

`
2)(1− y)(

n
`),

Let us now try to find such p, x, y ∈ (0, 1) for sufficiently large n. We choose y = 1

(n`)
, then

(1− y)(
n
`) ≈ 1

e . Furthermore, we observe that p and x need to fulfill the following inequalities:

p3 ≤ x(1− x)3n(1− y)n/2 ≤ x,

e−p(
`
2) ≈ (1− p)(

`
2) ≤ y(1− x)(

`
2)n(1− y)n/2 ≤ (1− x)(

`
2)n ≈ e−xn(

`
2).

Hence we need p ≥ xn ≥ p3n. Therefore p ≤ 1√
n

and x ≥ p3. Finally, for the second condition,
we note

e−p(
`
2) ≈ (1− p)(

`
2) ≤ y(1− x)(

`
2)n(1− y)n/2 ≤ y =

1(
n
`

) ≈ e−` logn,
hence p`2 ≥ p

(
`
2

)
≥ ` log n and therefore ` ≥ 1

p log n ≥
√
n log n.

Motivated by this we may assume ` ≥ 20
√
n log n and choose y = 1

(n`)
, x = 1

9n3/2 and p = 1
3
√
n

.

After choosing the constants, we can give the full proof. For sufficiently large n, we have

(1− y)(
n
`) =

(
1− 1(

n
`

))(n`)

≥ e−1.01,

(1− x)3n =

(
1− 1

9n3/2

)3n

≥ 1− 1

3
√
n
≥ e−0.01.

Thus,

p3 =
1

27n3/2
≤ 1

9n3/2
· 1

3
≤ 1

9n3/2
e−1.02 ≤ x(1− x)3n(1− y)(

n
`),

which establishes the first desired inequality.
For the second inequality, for sufficiently large n, we get

(1− x)(
l
2)n ≥ e−2xn(

l
2) ≥ e−

2
9
√
n(`

2).

Furthermore, using ` ≥ 20
√
n log n, we have

y =
1(
n
`

) ≥ 1

n`
= e−l logn ≥ e−l

2 1
20
√
n ≥ e−`(`−1)

1
19
√
n ≥ e−

1
9
√
n(`

2)+1.01
.
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Hence

(1− p)(
`
2) ≤ e−p(

`
2) = e

− 1
3
√
n(`

2) = e
− 1

9
√
n(`

2)+1.01
e
− 2

9
√
n(`

2)e−1.01 ≤ y(1− x)(
`
2)n(1− y)(

n
`),

which verifies the second desired inequality.
By Lemma 4.3, we obtain that

P

 ⋂
T∈([n]

3 )

AcT ∩
⋂

S∈([n]
` )

Bc
S

 > 0.

So for ` ≥ 20
√
n log n, we can find p, x, y such that there exists a 2 edge-coloring of Kn such

that there is no red triangle and there is no blue K`. This implies r(3, `) > n.

Note that n ≤ `2

(40 log `)2
implies

20
√
n log n ≤ 20

`

40 log `
log `2 = `.

Therefore we have r(3, `) ≥ `2

(40 log `)2
.

Theorem 4.5 (Erdős’ Lower Bound). Let C ≥ 1 and pC ∈ (0, 1/2] be the unique solution to

C = log pC
log(1−pC) . Let MC = p

−1/2
C . Then r(`, C`) = Ω(` ·M `

C). In particular, when C = 1, we have

pC = 1 and r(`, `) = Ω(`
√

2
`
).

Proof. Let p ∈ (0, 1/2]. Consider a random edge-coloring of the complete graph Kn, where each
edge is independently colored red with probability p and blue with probability 1− p. Let

f(n, p) := A(n, p) +B(n, p) where A(n, p) =

(
n

`

)
p(

`
2) and B(n, p) =

(
n

C`

)
(1− p)(

C`
2 ).

Note that
P[There exists a red K` or a blue KC`] ≤ f(n, p).

Hence, if f(n, p) = 1− o`(1), then there exists at least one such coloring with no red K` and
no blue KC`, implying r(`, C`) > n. It thus suffices to find the maximum value of n = n(p) such
that f(n, p) = o`(1). Assume this maximum is achieved at p0 = pC,`. Then,

∂f(n, p0)

∂p
=

(
`
2

)
p0

(
n

`

)
p
(`
2)

0 −
(
C`
2

)
1− p0

(
n

C`

)
(1− p0)(

C`
2 ) = 0.

Thus, we have logA(n, p0) = logB(n, p0)+O(log `). Solving this along with A(n, p0)+B(n, p0) =
1−o`(1), we obtain that logA(n, p0) = O(log `) and logB(n, p0) = O(log `). Therefore, we obtain
that − log p0 = 2 log(en/`)

`−1 +O
(
log `
`2

)
,

− log(1− p0) = 2 log(en/C`)
C`−1 +O

(
log `
`2

)
.

We then derive that p0 = pC+O(1/`), where the constant pC satisfies C = log pC
log(1−pC) . It follows

directly from the above that n = `
e · p

−(`−1)/2
0 · eO( log `

` ) = Θ(`) · (pC +O (1/`))−`/2 = Θ(` ·M `
C),

where MC := p
−1/2
C . This establishes r(`, C`) = Ω(` ·M `

C).
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