Lecture 4. Lower bounds on Ramsey numbers

4.1 Lovasz Local Lemma

Theorem 4.1 (Lovész Local Lemma (Symmetric Version)). Let {A;}icy be a family of random
events. For any i, P[A;] < p. Any event is independent of all other events except for d of them.
Ifep(d — 1) < 1, then the probability that all events’ complements occur simultaneously is greater

than 0, that is:
P [ﬂ A;?} > 0.

We focus on the asymmetric version of the Lovasz Local Lemma, which is stronger than the
symmetric version. Firstly, we define the following auxiliary graph.

Definition 4.2. Let A= {A;,..., Ay} be a family of random events in the probability space (2.
Let D := D 4 be the dependence graph with vertex set V(D) = A and edge set E(D) = {A4;A; :
A; and A;j are dependent for each i, j € [k]}.

Theorem 4.3 (Lovédsz Local Lemma (Asymmetric Version)). Given a probability space (Q2,P),
the event collection A and the dependence graph D in Definition 4.2. Denote the neighborhood
set of A; in D by N(A;). If there exists a mapping f: A — [0,1) satisfying that

PlA] < f(4) ] (1-1(B)
BEN(A;)

holds for each A; € A, then the following holds:
P [ﬂ Aﬂ > 0.

4.2 Applications of Lovasz Local Lemma

The Ramsey number r(k, £) is the smallest integer N such that any red-blue edge-coloring of Ky
contains a red K} or a blue K.
Remark:

e Ramsey’s Theorem [3]: The Ramsey number exists.

e Erdés and Szekeres [2]: r(k, () < (k;;ff) If k = £, then this yields r(k, k) < 4.

e Campos, Griffiths, Morris and Sahasrabudhe [1]: There exists ¢ > 0 such that r(k, k) <
(4 —e)*.

Theorem 4.4.

52
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Proof. Consider a random edge-coloring of the complete graph K,, where each edge is colored
red with probability p and blue with probability 1 — p independently. Our goal is to obtain that
with positive probability there is a coloring without a red triangle and without a blue Kj, since
this would establish the lower bound 7(3,¢) > n.

For each 3-element set T' C [n], let Az be the event that T induces a red K3. Note that for
each T, we have P[Ar] = p3. For each f-element set S C [n], let Bg be the event that S induces
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a blue Ky. Note that for each ¢, we have P[Bg| = (1 — p)(g) Let us now define a dependence
graph D for these events. We join two events of the form Ar or Bg, if the corresponding sets S
or T share an edge. Now we can bound the degrees in this graph,

{deg(A )S()(n—S)—I—(?’)( )<3n+( ) for each Ar,
deg(Bg) < () - (z)(z :23) ()n+( ) for each Bg.

Define a mapping f : {Ar : T € ([g})} U{Bg: S € ([ZL})} — [0,1) such that = := f(Ar)
and y := f(Bg). In order to use Lovasz Local Lemma, we need to find positive real numbers
x,y € (0,1) such that

PP <a(l— )1 —y)0),
(1=p)&) < y(1 — )G (1 =),

Let us now try to find such p,z,y € (0,1) for sufficiently large n. We choose y = ﬁ, then
4

(1-— y)(?) ~ L. Furthermore, we observe that p and z need to fulfill the following inequalities:

PP <a(l-2)*(1-y)"? <,

e () ~ (1 - p) ) <y(1 - x)(ﬁ)n(l Cy)2 < (1 - 2)@)n s emm(a),

Hence we need p > zn > p3n. Therefore p < f and z > p?. Finally, for the second condition,
we note

e—P(é) ~ (1 —p)(g) < y(l _ -T)(é)n(l _ y)n/Q < y = L ~ e—flogn7

7
hence pf? > p(€> > (logn and therefore £ > 1 5 logn > Vnlogn.

Motivated by this we may assume £ > QOf logn and choose y = i+ L

_ 1 _
(2),1: = W andp— ﬁ
After choosing the constants, we can give the full proof. For sufficiently large n, we have

o L\ @) .
1—y)ld) = (1- < > e 101,
(1-y) ( (?)) >

QI L p——— 3n>1—71 > 7001
YT mi2Z) T T3 m

= 1 < 11 < 1
27n3/2 — 9n3/2 3 ~ 9n3/2
which establishes the first desired inequality.
For the second inequality, for sufficiently large n, we get

Thus,

e 1.02 < l‘(l - x)3n(1 . y)(?)

(1= )7 > ¢=2n() > 7w (5),

Furthermore, using ¢ > 20+/n log n, we have

1 1 _2_1 () 1
y—")zg_e“ognzel”ﬁze MUDwm > o
¢
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Hence
(1 — p)(g) < @_p(g) = e_ﬁ(g) = e_ﬁ(g)—i_l'(ne_ﬁ(g)e*l'(n < y(l — 1‘)(5)”(1 — y)(?)

Y

which verifies the second desired inequality.
By Lemma 4.3, we obtain that

P| () 470 () B§| >o0.
re('y) se(%)
So for ¢ > 20y/nlogn, we can find p, z,y such that there exists a 2 edge-coloring of K,, such
that there is no red triangle and there is no blue K,. This implies 7(3,¢) > n.

Note that n < ﬁ implies
l
20y/nlogn < 2 log * = /.
0v/nlogn < 04010g€ og
Therefore we have r(3,¢) > S ]

(401og 0)2 -

Theorem 4.5 (Erdds’ Lower Bound). Let C' > 1 and pc € (0,1/2] be the unique solution to

C= logkgifgc)' Let M¢c = pgl/z. Then r(€,C0) = Q- M§). In particular, when C = 1, we have

pc =1 and r(¢,0) = Q(ﬁﬂz).
Proof. Let p € (0,1/2]. Consider a random edge-coloring of the complete graph K,,, where each
edge is independently colored red with probability p and blue with probability 1 — p. Let

4

Fn,p) = Alwp) + Bl p) where A(n,p) = () and Bp) = 7)1 - (%)

Note that
P[There exists a red K, or a blue K¢y < f(n,p).

Hence, if f(n,p) =1 — 0g(1), then there exists at least one such coloring with no red K, and
no blue K¢y, implying (¢, C'¢) > n. It thus suffices to find the maximum value of n = n(p) such
that f(n,p) = 0¢(1). Assume this maximum is achieved at py = pc¢. Then,

)4 Cce
Op po \()™°  1—po\Ct '
Thus, we have log A(n, pg) = log B(n,pg)+O(log £). Solving this along with A(n,po)+ B(n,po) =
1—o0¢(1), we obtain that log A(n, pg) = O(log¢) and log B(n,pg) = O(log ¢). Therefore, we obtain
that

—logpo =
—log(1 — po) = 28540 1 0 (151).

We then derive that pg = pc+O(1/£), where the constant p¢ satisfies C = bgk(”‘l’rifgc). It follows

directly from the above that n = % -pa(e_l)/Q O = o) - (pc + O (1/€))_£/2 =0 Mg),
where M := p;"/%. This establishes r(¢, C) = Q(¢ - ML) N

)

2log(en/f) log ¢
1 T 0 za
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