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Lecture 1. Constructions of Extremal Graphs

Given a graph H, a graph G is called H-free if G does not contain H as its subgraph. For general
graphs H, the Turán number ex(n,H) is defined as follows:

ex(n,H) = max{e(G) : v(G) = n,H * G}.

Kövari-Sós-Turán Theorem tells us that for any bipartiteH there exists c > 0 such that ex(n,H) =
O(n2−c). Now we will apply Randomized construction, Algebraic construction, and Randomized
Algebraic construction to obtain lower bounds of Turán numbers for bipartite graphs.

1.1 Randomized construction

Theorem 1.1. For any graph H with at least 2 edges, there exists a constant c > 0 such that

ex(n,H) ≥ cn2−
v(H)−2
e(H)−1 .

Proof. (The idea is to use random graphs and the deletion/alternation method.) Consider a

random graph G = G(n, p) where p = 1
2n

v(H)−2
e(H)−1 . Let h be the number of H-copies in G. Then we

have

E[h] =
n(n− 1) · · · (n− v(H) + 1)

|Aut(H)|
pe(H) ≤ nv(H)pe(H).

Since p = 1
2n
− v(H)−2

e(H)−1 and E[e(G)] = p
(
n
2

)
, we get E[h] ≤ E[e(G)]/2 which implies that

E[e(G)− h] ≥ 1

2
E[e(G)] =

1

2
p

(
n

2

)
≥ 1

16
n
2− v(H)−2

e(H)−1 .

Thus there exists an n-vertex graph G with e(G)− h ≥ 1
16n

2− v(H)−2
e(H)−1 .

Let G′ be obtained from G by deleting one edge for each copy of H in G. Then G′ is H-free
and

e(G′) ≥ e(G)− h ≥ 1

16
n
2− v(H)−2

e(H)−1 .

So

ex(n,H) ≥ e(G′) ≥ 1

16
n
2− v(H)−2

e(H)−1 .
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Remark:

• ex(n,C2k) = Ω(n2−
2k−2
2k−1 ) = Ω(n1+

1
2k−1 ).

• ex(n,Ks,t) = Ω(n2−
s+t−2
st−1 ).

Definition 1.2. The 2-density of H is

m2(H) = max
H′⊂H
v(H′)≥3

e(H ′)− 1

v(H ′)− 2
.

Exercise:

• For any H with at least 2 edges,

ex(n,H) = Ω(n
2− 1

m2(H) ).

1.2 Algebraic construction

For C4, we have Reiman’s bound:

ex(n,C4) ≤
n

4
(1 +

√
4n− 3) = (

1

2
+ o(1))n

3
2 .

Next, we will give the lower bound of ex(n,C4) using algebraic construction. We can prove the
following theorem.

Theorem 1.3. ex(n,C4) ≥ (12 + o(1))n3/2.

Proof. For a prime q, we first define the Erdős-Rényi polarity graph ERq as following:

• Its vertex set is {U : U is a 1-dimension subspace in a 3-dimension space F3
q}.

• U,W are adjacent in ERq if and only if U and W (U 6= W ) are perpendicular as 1-dimension
subspace.

Obviously v(ERq) = q3−1
q−1 = q2 + q + 1.

We see each vertex U has degree q or q + 1, since there are exactly q2−1
q−1 = q + 1 many 1-

dimension subspaces W that are perpendicular to U . But there are q + 1 absolute vertices U ,
which means U ⊥ U and we do not allow loops. For such U , it has degree q. Also ERq is C4-free,
because given any two vertices U,W , there is exactly one line L perpendicular to both U and W .
Then we have

e(ERq) ≥
1

2
(q2(q + 1) + (q + 1)q) =

1

2
q(q + 1)2 = (

1

2
+ o(1))v(ERq)

3/2,

where v(ERq) = q2 +q+1 for primes q. By the number theory we know that for any large integer
n there exists a prime in the interval [n− n0.525, n]. Thus there exists an n-vertex C4-free graph
with at least (12 + o(1))n3/2 edges for any large n.
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1.2.1 New constructions of ex(n,C4)

Theorem 1.4 (Erdős-Rényi-Sós). ex(n,C4) ≥ (12 − o(1))n3/2.

Proof. We have seen that the Erdős-Rényi polarity graphs ERq can give this lower bound in
Theorem 1.3. Now we give a different construction for C4-free graphs which also yield the same
lower bound.

Suppose n = q2 − 1 for a prime q. Consider the following graph G = (V,E), where V =
F 2
q \ {0, 0}, E = {(x, y) ∼ (a, b)|ax + by = 1 over Fq}. First, we see G is C4-free: for any

distinct vertices (a, b) 6= (a′, b′), there is at most one solution(common neighbor) satisfying both
ax+ by = 1 and a′x+ b′y = 1. It is easy to see that the degree of each vertex is q or q − 1 since
we do not allow loops. So |E| ≥ 1

2(q2 − 1)(q − 1) ≈ (12 − o(1))n3/2 (where n = q2 − 1). The
above construction works when n is prime. But it known for every integer n there exists a prime
p satisfying n ≤ p ≤ (1 + o(1))n, the above lower bound applies to all values of n. We can get
ex(n,C4) ≥ (12 − o(1))n3/2.

Remark:

• Bondy-Simonovits: ex(n,C2k) ≤ 100kn1+1/k,

• 0.538n4/3 ≤ ex(n,C6) ≤ 0.627n4/3,

• ex(n,C10) = Θ(n6/5),

• For any t ≥ s ≥ 2, we have ex(n,Ks,t) = Os,t(n
2−1/s).

1.2.2 Constructions of ex(n,K3,3)

Theorem 1.5 (Brown).

ex(n,K3,3) ≥ (
1

2
− o(1))n5/3.

Proof. Let n = q3 for some odd prime q. Consider the following graph G with V (G) = F 3
q and

E(G) = {(x, y, z) ∼ (a, b, c)|(x−a)2 + (y− b)2 + (z− c)2 = d over Fq}, where d 6= 0 is a quadratic
residue1 if q = 4k − 1 and d is a quadratic non-residue if q = 4k − 3.

It is easy to check that G is K3,3-free. We should omit the detailed proof, instead we give
the following intuition : The K3,3-freeness is equivalent to the statement that any 3 unit spheres
have at most two common points. It is not hard to see that vertices (x, y, z) have q2 or q2 − 1
neighbors. Thus we have e(G) ≥ 1

2q
3(q2 − 1) ≈ (12 − o(1))n5/3 when n = q3.

1.3 Norm grahs

Lemma 1.6. Let K be a field and aij , bi ∈ K for 1 ≤ i, j ≤ 2 such that a1j 6= a2j. Then the
system of equations {

(x1 − a11)(x2 − a12) = b1

(x1 − a21)(x2 − a22) = b2

has at most two solutions (x1, x2) ∈ K ×K.

1there is an integer x such that x2 ≡ d (mod q).
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Proof. Considering the difference of two equations, we get (a11−a21)x2 +(a12−a22)x1 +a21a22−
a11a12 = b2 − b1. Since a11 − a21 6= 0, we can express x1 by an expression of x2. Substituting
this expression to any one of the equation, we get a quadratic equation in the variable x2. It has
at most two solutions for x2, each of which determines the valus of x1. So we have at most two
solutions (x1, x2) ∈ K ×K.

Lemma 1.7. Let K be a field with characteristic q. Then any x, y ∈ K satisfy (x+y)q = xq+yq.

Definition 1.8. Let q be a prime. The norm mapping N : Fqs → Fq is given by

N(x) = xxqxq
2
. . . xq

s−1

for any x ∈ Fqs .
Note that this is well-defined: since xq

s
= x for any x ∈ Fqs , we have (N(x))q = xqxq

2
. . . xq

s
=

N(x), implying that N(x) ∈ Fq.

Theorem 1.9 (Alon-Rónyai-Szabó). For every n = q3 − q2 where q is a prime power,

ex(n,K3,3) ≥
1

2
n5/3 +

1

3
n4/3 + C.

Proof. Let N : Fq2 → Fq be the norm mapping. The graph H = H(q, 3) is as follows. The vertex
set of H is Fq2 ×F ∗q and |V (H)| = q2(q− 1). Two vertices (A, a) and (B, b) in V (H) are adjacent
if and only if N(A + B) = ab. The degree of each vertex (A, a) ∈ V (H) is the number of pairs
(B, b) with N(A+B) = ab. For any B 6= −A, we can have a unique b. So the degree of (A, a) is
q2 − 1 or q2 − 2, as N(A + A) = a2 may happen. So we have |E(H)| ≥ 1

2

(
q2(q − 1)

)
(q2 − 2) ≥

1
2n

5/3 + 1
3n

4/3 + C.
Now it suffices to show H is K3,3-free, which is enough to show that for any three distinct

vertices (Di, di) with i ∈ [3], they have at most 2 common neighbors. That is, the system of
equations: 

N(X +D1) = xd1 (1.1)

N(X +D2) = xd2 (1.2)

N(X +D3) = xd3 (1.3)

has at most 2 solutions (X,x) ∈ Fq2 × F ∗q . Observe that if (X,x) is a solution, then:

1) X 6= −Di, for i ∈ [3], and

2) Di 6= Dj , for i 6= j.

Divide equations (1.1) and (1.2) by equation (1.3), we can get

di
d3

=
N(X +Di)

N(X +D3)
= N

(
X +Di

X +D3

)
= N

(
1 +

Di −D3

X +D3

)
, for i = 1, 2.

Let Y = 1
X+D3

, Ai = 1
Di−D3

, and bi = di
d3N(Di−D3)

, i ∈ [2]. Then,{
(Y +A1)(Y

q +Aq1) = N(Y +A1) = b1

(Y +A2)(Y
q +Aq2) = N(Y +A2) = b2

It is clear that A1 6= A2 and Aq1 6= Aq2. Then by lemma 1.6, this system has at most 2 solutions
(Y, Y q). Therefore, we have at most two pairs of (X,x).
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Theorem 1.10 (Alon-Rónyai-Szabó). H(q, s) is Ks,(s−1)!+1-free. Therefore, for t ≥ (s− 1)! + 1,

ex(n,Ks,t) = Θ(n2−1/s).

Proof. Exercise (similar to the proof of Theorem 1.7 for H(q, 3)).
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