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Lecture 1. Constructions of Extremal Graphs

Given a graph H, a graph G is called H-free if G does not contain H as its subgraph. For general
graphs H, the Turdn number ex(n, H) is defined as follows:

ex(n, H) = max{e(G) : v(G) =n,H ¢ G}.

Ko6vari-Sés-Turdn Theorem tells us that for any bipartite H there exists ¢ > 0 such that ex(n, H) =
O(n?=¢). Now we will apply Randomized construction, Algebraic construction, and Randomized
Algebraic construction to obtain lower bounds of Turan numbers for bipartite graphs.

1.1 Randomized construction

Theorem 1.1. For any graph H with at least 2 edges, there exists a constant ¢ > 0 such that

Proof. (The idea is to use random graphs and the deletion/alternation method.) Consider a

v(H)—-2
random graph G' = G(n, p) where p = fne(H . Let h be the number of H-copies in G. Then we
e (0= 1)+ (0 — olt) + 1)
nn—1)---(n—v +
E[h] = e(H) < v(H)pe(H)
2] | Aut(H)| pro=nr

Since p = $n~ =1 and Ele(G)] = p(5), we get E[h] < E[e(G)]/2 which implies that

1 1 2 v(H
E G h > —-E [ e(H
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Thus there exists an n-vertex graph G with e(G) —h > gzn” «-T.
Let G’ be obtained from G by deleting one edge for each copy of H in G. Then G’ is H-free
and

, 1 9_ v(H)—2
e(G") > e(G) —h > 16" (-1,
So
, 1 2_’U(H)72
ex(n,H) > e(G') > 6" e(H)-1,



Remark:
g 2k=2 1
e ex(n,Co,) = Q(n" 26-1) = Q(n "2-1).

92— s+t—2

o ex(n, Ky;) = Q(n™ st-1 ).

Definition 1.2. The 2-density of H is

Exercise:

e For any H with at least 2 edges,
91
ex(n, H) = Q(n~ m200)),

1.2 Algebraic construction

For C4, we have Reiman’s bound:
1
ex(n,Cy) < %(1 +V4dn —-3) = (5 + 0(1))n%.

Next, we will give the lower bound of ex(n,Cy) using algebraic construction. We can prove the
following theorem.

Theorem 1.3. ex(n,Cy) > (3 + o(1))n?/2.
Proof. For a prime g, we first define the Erdés-Rényi polarity graph ER, as following:
o Its vertex set is {U : U is a 1-dimension subspace in a 3-dimension space Fg}

e U, W are adjacent in ER, if and only if U and W (U # W) are perpendicular as 1-dimension

subspace.
. 3_
Obviously v(ER,) = qq_—ll =¢+q+1.
2
We see each vertex U has degree g or ¢ + 1, since there are exactly qq%ll = ¢ + 1 many 1-

dimension subspaces W that are perpendicular to U. But there are ¢ + 1 absolute vertices U,
which means U L U and we do not allow loops. For such U, it has degree q. Also ER, is Cy-free,
because given any two vertices U, W, there is exactly one line L perpendicular to both U and W.
Then we have

1 1 1
e(BRy) > 5(¢*(q+ 1) + (¢ + Do) = Sala + 1) = (5 + o(1)u(ERy)*?,
where v(ER,) = q*>+q+1 for primes ¢q. By the number theory we know that for any large integer

n there exists a prime in the interval [n — n%92° n]. Thus there exists an n-vertex Cy-free graph
with at least (3 + o(1))n?/? edges for any large n. ]



1.2.1 New constructions of ex(n,Cy)
Theorem 1.4 (Erdés-Rényi-Sés). ex(n,Cy) > (3 — o(1))n3/2.

Proof. We have seen that the Erdés-Rényi polarity graphs ER, can give this lower bound in
Theorem 1.3. Now we give a different construction for Cy-free graphs which also yield the same
lower bound.

Suppose n = ¢> — 1 for a prime q. Consider the following graph G = (V, E), where V =
F2\{0,0}, E = {(z,y) ~ (a,b)lax + by = 1 over Fy}. First, we see G is Cy-free: for any
distinct vertices (a,b) # (a’,1'), there is at most one solution(common neighbor) satisfying both
ar +by =1 and o’z + b'y = 1. It is easy to see that the degree of each vertex is ¢ or ¢ — 1 since
we do not allow loops. So |E| > 1(¢> = 1)(¢ — 1) = (1 — 0(1))n%? (where n = ¢*> — 1). The
above construction works when n is prime. But it known for every integer n there exists a prime
p satisfying n < p < (14 o(1))n, the above lower bound applies to all values of n. We can get
ex(n, Cy) > (3 — o(1))n*/2, ]

Remark:

e Bondy-Simonovits: ex(n, Ca,) < 100kn**+1/*,
e 0.538n%3 < ex(n, Cg) < 0.627n*/3,

e ex(n,Cg) = O(nb/5),

e For any t > 5 > 2, we have ex(n, K, ;) = Og¢(n?>71/%).

1.2.2 Constructions of ex(n, K33)

Theorem 1.5 (Brown).
1 .
ex(n, K33) > (5 — o(1))n’/3.

Proof. Let n = ¢* for some odd prime ¢q. Consider the following graph G with V(G) = Fg’ and
E(G) = {(z,y,2) ~ (a,b,¢)|(x —a)? + (y — b)? + (2 — ¢)> = d over F,}, where d # 0 is a quadratic
residue! if ¢ = 4k — 1 and d is a quadratic non-residue if ¢ = 4k — 3.

It is easy to check that G is K33-free. We should omit the detailed proof, instead we give
the following intuition : The K3 3-freeness is equivalent to the statement that any 3 unit spheres
have at most two common points. It is not hard to see that vertices (z,y, z) have ¢ or ¢*> — 1
neighbors. Thus we have e(G) > 1¢3(¢*> — 1) ~ (1 — 0(1))n®/? when n = ¢°. ]

1.3 Norm grahs

Lemma 1.6. Let K be a field and a;;,b; € K for 1 < 4,5 < 2 such that ay; # azj. Then the
system of equations

{ (x1 —a11)(z2 — a12) = b

(x1 — ag1)(x2 — age) = by

has at most two solutions (x1,x2) € K x K.

'there is an integer = such that > = d (mod q).



Proof. Considering the difference of two equations, we get (a11 — ag1)z2 + (a12 — age)x1 + azia9 —
ai1a12 = ba — by. Since a1 — a9 # 0, we can express 1 by an expression of zo. Substituting
this expression to any one of the equation, we get a quadratic equation in the variable zo. It has
at most two solutions for x5, each of which determines the valus of x;. So we have at most two
solutions (x1,z2) € K x K. ]

Lemma 1.7. Let K be a field with characteristic q. Then any z,y € K satisfy (x+y)? = x94y1.

Definition 1.8. Let ¢ be a prime. The norm mapping N : Fys — Fy is given by

N(x) = zxlz? 2T

for any x € Fis.

Note that this is well-defined: since 29" = x for any x € Fs, we have (N (z))? = 2iz? . 0 =
N(z), implying that N(z) € Fj.

Theorem 1.9 (Alon-Rényai-Szabd). For every n = ¢® — ¢* where q is a prime power,
1 1
wmjggziﬁﬁ+§ﬁm+a

Proof. Let N : F2 — I, be the norm mapping. The graph H = H(q, 3) is as follows. The vertex
set of H is Fjz x Ff and |V(H)| = ¢*(¢—1). Two vertices (A,a) and (B,b) in V(H) are adjacent
if and only if N(A + B) = ab. The degree of each vertex (A,a) € V(H) is the number of pairs
(B,b) with N(A+ B) = ab. For any B # —A, we can have a unique b. So the degree of (A, a) is
¢*—1or ¢* — 2, as N(A+ A) = a® may happen. So we have |E(H)| > 3 (¢*(¢—1)) (¢* — 2) >
T
Now it suffices to show H is K3 3-free, which is enough to show that for any three distinct

vertices (D;,d;) with i € [3], they have at most 2 common neighbors. That is, the system of
equations:

N(X + Dy) = zdy (1.1)

N(X + Dg) = zdy

N(X + D3) = xds

has at most 2 solutions (X, x) € Fyz x F;. Observe that if (X, ) is a solution, then:
1) X # —D,, for i € [3], and
2) D; # Dj, for i # j.

Divide equations (1.1) and (1.2) by equation (1.3), we can get

ﬂ_N(X—FDi)_ <X+Di>_N<1+Di—D3
ds  N(X + Ds) X+ Ds X + Ds

), fori=1,2.

1 1 d; .
Let Y = m,Al = Di—D3’ and bz = m,l S [2] Then,

Y+A)YI+A)=NY +4)=h
(Y + A9) (Y7 + Al) = N(Y + Ag) = by

It is clear that Ay # As and A? # A% Then by lemma 1.6, this system has at most 2 solutions
(Y,Y?). Therefore, we have at most two pairs of (X, z). ]



Theorem 1.10 (Alon-Rényai-Szabd). H(q,s) is K s—1y141-free. Therefore, fort > (s —1)I+1,
ex(n, Kqz) = O(n*71/9).

Proof. Exercise (similar to the proof of Theorem 1.7 for H (g, 3)). ]



