Constructive Proofs in Extremal Graph Theory

Instructor: Jie Ma Scribed by Bin Wang

September 8, 2025

Lecture 1. Constructions of Extremal Graphs

Given a graph H, a graph G is called H-free if G does not contain H as its subgraph. For general graphs H, the $Tur\acute{a}n$ number ex(n,H) is defined as follows:

$$ex(n, H) = \max\{e(G) : v(G) = n, H \not\subseteq G\}.$$

Kövari-Sós-Turán Theorem tells us that for any bipartite H there exists c>0 such that $\operatorname{ex}(n,H)=O(n^{2-c})$. Now we will apply Randomized construction, Algebraic construction, and Randomized Algebraic construction to obtain lower bounds of Turán numbers for bipartite graphs.

1.1 Randomized construction

Theorem 1.1. For any graph H with at least 2 edges, there exists a constant c > 0 such that

$$ex(n, H) \ge cn^{2 - \frac{v(H) - 2}{e(H) - 1}}.$$

Proof. (The idea is to use random graphs and the deletion/alternation method.) Consider a random graph G=G(n,p) where $p=\frac{1}{2}n^{\frac{v(H)-2}{e(H)-1}}$. Let h be the number of H-copies in G. Then we have

$$\mathbb{E}[h] = \frac{n(n-1)\cdots(n-v(H)+1)}{|Aut(H)|} p^{e(H)} \le n^{v(H)} p^{e(H)}.$$

Since $p = \frac{1}{2}n^{-\frac{v(H)-2}{e(H)-1}}$ and $\mathbb{E}[e(G)] = p\binom{n}{2}$, we get $\mathbb{E}[h] \leq \mathbb{E}[e(G)]/2$ which implies that

$$\mathbb{E}[e(G) - h] \ge \frac{1}{2} \mathbb{E}[e(G)] = \frac{1}{2} p \binom{n}{2} \ge \frac{1}{16} n^{2 - \frac{v(H) - 2}{e(H) - 1}}.$$

Thus there exists an *n*-vertex graph G with $e(G) - h \ge \frac{1}{16} n^{2 - \frac{v(H) - 2}{e(H) - 1}}$.

Let G' be obtained from G by deleting one edge for each copy of H in G. Then G' is H-free and

$$e(G') \ge e(G) - h \ge \frac{1}{16} n^{2 - \frac{v(H) - 2}{e(H) - 1}}.$$

So

$$ex(n, H) \ge e(G') \ge \frac{1}{16} n^{2 - \frac{v(H) - 2}{e(H) - 1}}.$$

Remark:

- $\operatorname{ex}(n, C_{2k}) = \Omega(n^{2 \frac{2k-2}{2k-1}}) = \Omega(n^{1 + \frac{1}{2k-1}}).$
- $ex(n, K_{s,t}) = \Omega(n^{2 \frac{s+t-2}{st-1}}).$

Definition 1.2. The 2-density of H is

$$m_2(H) = \max_{\substack{H' \subset H \\ v(H') \ge 3}} \frac{e(H') - 1}{v(H') - 2}.$$

Exercise:

• For any H with at least 2 edges,

$$ex(n, H) = \Omega(n^{2 - \frac{1}{m_2(H)}}).$$

1.2 Algebraic construction

For C_4 , we have Reiman's bound:

$$ex(n, C_4) \le \frac{n}{4}(1 + \sqrt{4n - 3}) = (\frac{1}{2} + o(1))n^{\frac{3}{2}}.$$

Next, we will give the lower bound of $ex(n, C_4)$ using algebraic construction. We can prove the following theorem.

Theorem 1.3. $ex(n, C_4) \ge (\frac{1}{2} + o(1))n^{3/2}$.

Proof. For a prime q, we first define the Erdős-Rényi polarity graph ER_q as following:

- Its vertex set is $\{U: U \text{ is a 1-dimension subspace in a 3-dimension space } \mathbb{F}_q^3\}.$
- U, W are adjacent in ER_q if and only if U and W ($U \neq W$) are perpendicular as 1-dimension subspace.

Obviously
$$v(ER_q) = \frac{q^3 - 1}{q - 1} = q^2 + q + 1$$
.

We see each vertex U has degree q or q+1, since there are exactly $\frac{q^2-1}{q-1}=q+1$ many 1-dimension subspaces W that are perpendicular to U. But there are q+1 absolute vertices U, which means $U \perp U$ and we do not allow loops. For such U, it has degree q. Also ER_q is C_4 -free, because given any two vertices U, W, there is exactly one line L perpendicular to both U and W. Then we have

$$e(ER_q) \ge \frac{1}{2}(q^2(q+1) + (q+1)q) = \frac{1}{2}q(q+1)^2 = (\frac{1}{2} + o(1))v(ER_q)^{3/2},$$

where $v(ER_q) = q^2 + q + 1$ for primes q. By the number theory we know that for any large integer n there exists a prime in the interval $[n - n^{0.525}, n]$. Thus there exists an n-vertex C_4 -free graph with at least $(\frac{1}{2} + o(1))n^{3/2}$ edges for any large n.

1.2.1 New constructions of $ex(n, C_4)$

Theorem 1.4 (Erdős-Rényi-Sós). $ex(n, C_4) \ge (\frac{1}{2} - o(1))n^{3/2}$.

Proof. We have seen that the Erdős-Rényi polarity graphs ER_q can give this lower bound in Theorem 1.3. Now we give a different construction for C_4 -free graphs which also yield the same lower bound.

Suppose $n=q^2-1$ for a prime q. Consider the following graph G=(V,E), where $V=F_q^2\setminus\{0,0\}$, $E=\{(x,y)\sim(a,b)|ax+by=1\text{ over }F_q\}$. First, we see G is C_4 -free: for any distinct vertices $(a,b)\neq(a',b')$, there is at most one solution(common neighbor) satisfying both ax+by=1 and a'x+b'y=1. It is easy to see that the degree of each vertex is q or q-1 since we do not allow loops. So $|E|\geq \frac{1}{2}(q^2-1)(q-1)\approx (\frac{1}{2}-o(1))n^{3/2}$ (where $n=q^2-1$). The above construction works when n is prime. But it known for every integer n there exists a prime p satisfying $n\leq p\leq (1+o(1))n$, the above lower bound applies to all values of n. We can get $\exp(n,C_4)\geq (\frac{1}{2}-o(1))n^{3/2}$.

Remark:

- Bondy-Simonovits: $ex(n, C_{2k}) \le 100kn^{1+1/k}$,
- $0.538n^{4/3} \le ex(n, C_6) \le 0.627n^{4/3}$,
- $ex(n, C_{10}) = \Theta(n^{6/5}),$
- For any $t \ge s \ge 2$, we have $ex(n, K_{s,t}) = O_{s,t}(n^{2-1/s})$.

1.2.2 Constructions of $ex(n, K_{3,3})$

Theorem 1.5 (Brown).

$$ex(n, K_{3,3}) \ge (\frac{1}{2} - o(1))n^{5/3}.$$

Proof. Let $n=q^3$ for some odd prime q. Consider the following graph G with $V(G)=F_q^3$ and $E(G)=\{(x,y,z)\sim (a,b,c)|(x-a)^2+(y-b)^2+(z-c)^2=d \text{ over } F_q\}$, where $d\neq 0$ is a quadratic residue¹ if q=4k-1 and d is a quadratic non-residue if q=4k-3.

It is easy to check that G is $K_{3,3}$ -free. We should omit the detailed proof, instead we give the following intuition: The $K_{3,3}$ -freeness is equivalent to the statement that any 3 unit spheres have at most two common points. It is not hard to see that vertices (x,y,z) have q^2 or q^2-1 neighbors. Thus we have $e(G) \geq \frac{1}{2}q^3(q^2-1) \approx (\frac{1}{2}-o(1))n^{5/3}$ when $n=q^3$.

1.3 Norm grahs

Lemma 1.6. Let K be a field and $a_{ij}, b_i \in K$ for $1 \le i, j \le 2$ such that $a_{1j} \ne a_{2j}$. Then the system of equations

$$\begin{cases} (x_1 - a_{11})(x_2 - a_{12}) = b_1 \\ (x_1 - a_{21})(x_2 - a_{22}) = b_2 \end{cases}$$

has at most two solutions $(x_1, x_2) \in K \times K$.

¹there is an integer x such that $x^2 \equiv d \pmod{q}$.

Proof. Considering the difference of two equations, we get $(a_{11}-a_{21})x_2+(a_{12}-a_{22})x_1+a_{21}a_{22}-a_{22}$ $a_{11}a_{12}=b_2-b_1$. Since $a_{11}-a_{21}\neq 0$, we can express x_1 by an expression of x_2 . Substituting this expression to any one of the equation, we get a quadratic equation in the variable x_2 . It has at most two solutions for x_2 , each of which determines the value of x_1 . So we have at most two solutions $(x_1, x_2) \in K \times K$.

Lemma 1.7. Let K be a field with characteristic q. Then any $x, y \in K$ satisfy $(x+y)^q = x^q + y^q$.

Definition 1.8. Let q be a prime. The norm mapping $N: F_{q^s} \to F_q$ is given by

$$N(x) = xx^q x^{q^2} \dots x^{q^{s-1}}$$

for any $x \in F_{q^s}$.

Note that this is well-defined: since $x^{q^s} = x$ for any $x \in F_{q^s}$, we have $(N(x))^q = x^q x^{q^2} \dots x^{q^s} = x^q x^{q^s}$ N(x), implying that $N(x) \in F_q$.

Theorem 1.9 (Alon-Rónyai-Szabó). For every $n = q^3 - q^2$ where q is a prime power,

$$ex(n, K_{3,3}) \ge \frac{1}{2}n^{5/3} + \frac{1}{3}n^{4/3} + C.$$

Proof. Let $N: F_{q^2} \to F_q$ be the norm mapping. The graph H = H(q,3) is as follows. The vertex set of H is $F_{q^2} \times F_q^*$ and $|V(H)| = q^2(q-1)$. Two vertices (A,a) and (B,b) in V(H) are adjacent if and only if N(A+B)=ab. The degree of each vertex $(A,a)\in V(H)$ is the number of pairs (B,b) with N(A+B)=ab. For any $B\neq -A$, we can have a unique b. So the degree of (A,a) is $q^2 - 1$ or $q^2 - 2$, as $N(A + A) = a^2$ may happen. So we have $|E(H)| \ge \frac{1}{2} (q^2(q-1)) (q^2 - 2) \ge 1$ $\frac{1}{2}n^{5/3} + \frac{1}{3}n^{4/3} + C.$

Now it suffices to show H is $K_{3,3}$ -free, which is enough to show that for any three distinct vertices (D_i, d_i) with $i \in [3]$, they have at most 2 common neighbors. That is, the system of equations:

$$\int N(X+D_1) = xd_1 \tag{1.1}$$

$$\begin{cases} N(X+D_1) = xd_1 & (1.1) \\ N(X+D_2) = xd_2 & (1.2) \\ N(X+D_2) = xd_2 & (1.3) \end{cases}$$

$$N(X+D_3) = xd_3 \tag{1.3}$$

has at most 2 solutions $(X,x) \in F_{q^2} \times F_q^*$. Observe that if (X,x) is a solution, then:

- 1) $X \neq -D_i$, for $i \in [3]$, and
- 2) $D_i \neq D_i$, for $i \neq j$.

Divide equations (1.1) and (1.2) by equation (1.3), we can get

$$\frac{d_i}{d_3} = \frac{N(X + D_i)}{N(X + D_3)} = N\left(\frac{X + D_i}{X + D_3}\right) = N\left(1 + \frac{D_i - D_3}{X + D_3}\right), \text{ for } i = 1, 2.$$

Let $Y = \frac{1}{X+D_3}$, $A_i = \frac{1}{D_i-D_3}$, and $b_i = \frac{d_i}{d_3N(D_i-D_3)}$, $i \in [2]$. Then,

$$\begin{cases} (Y+A_1)(Y^q+A_1^q) = N(Y+A_1) = b_1\\ (Y+A_2)(Y^q+A_2^q) = N(Y+A_2) = b_2 \end{cases}$$

It is clear that $A_1 \neq A_2$ and $A_1^q \neq A_2^q$. Then by lemma 1.6, this system has at most 2 solutions (Y,Y^q) . Therefore, we have at most two pairs of (X,x).

Theorem 1.10 (Alon-Rónyai-Szabó). H(q,s) is $K_{s,(s-1)!+1}$ -free. Therefore, for $t \geq (s-1)!+1$, $\operatorname{ex}(n,K_{s,t}) = \Theta(n^{2-1/s}).$

Proof. Exercise (similar to the proof of Theorem 1.7 for H(q,3)).