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Lecture 1. Constructions of Extremal Graphs

Given a graph H, a graph G is called H-free if G does not contain H as its subgraph. For general
graphs H, the Turán number ex(n,H) is defined as follows:

ex(n,H) = max{e(G) : v(G) = n,H * G}.

Kövari-Sós-Turán Theorem tells us that for any bipartiteH there exists c > 0 such that ex(n,H) =
O(n2−c). Now we will apply Randomized construction, Algebraic construction, and Randomized
Algebraic construction to obtain lower bounds of Turán numbers for bipartite graphs.

1.1 Randomized construction

Theorem 1.1. For any graph H with at least 2 edges, there exists a constant c > 0 such that

ex(n,H) ≥ cn2−
v(H)−2
e(H)−1 .

Proof. (The idea is to use random graphs and the deletion/alternation method.) Consider a

random graph G = G(n, p) where p = 1
2n

v(H)−2
e(H)−1 . Let h be the number of H-copies in G. Then we

have

E[h] =
n(n− 1) · · · (n− v(H) + 1)

|Aut(H)|
pe(H) ≤ nv(H)pe(H).

Since p = 1
2n
− v(H)−2

e(H)−1 and E[e(G)] = p
(
n
2

)
, we get E[h] ≤ E[e(G)]/2 which implies that

E[e(G)− h] ≥ 1

2
E[e(G)] =

1

2
p

(
n

2

)
≥ 1

16
n
2− v(H)−2

e(H)−1 .

Thus there exists an n-vertex graph G with e(G)− h ≥ 1
16n

2− v(H)−2
e(H)−1 .

Let G′ be obtained from G by deleting one edge for each copy of H in G. Then G′ is H-free
and

e(G′) ≥ e(G)− h ≥ 1

16
n
2− v(H)−2

e(H)−1 .

So

ex(n,H) ≥ e(G′) ≥ 1

16
n
2− v(H)−2

e(H)−1 .
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Remark:

• ex(n,C2k) = Ω(n2−
2k−2
2k−1 ) = Ω(n1+

1
2k−1 ).

• ex(n,Ks,t) = Ω(n2−
s+t−2
st−1 ).

Definition 1.2. The 2-density of H is

m2(H) = max
H′⊂H
v(H′)≥3

e(H ′)− 1

v(H ′)− 2
.

Exercise:

• For any H with at least 2 edges,

ex(n,H) = Ω(n
2− 1

m2(H) ).

1.2 Algebraic construction

For C4, we have Reiman’s bound:

ex(n,C4) ≤
n

4
(1 +

√
4n− 3) = (

1

2
+ o(1))n

3
2 .

Next, we will give the lower bound of ex(n,C4) using algebraic construction. We can prove the
following theorem.

Theorem 1.3. ex(n,C4) ≥ (12 + o(1))n3/2.

Proof. For a prime q, we first define the Erdős-Rényi polarity graph ERq as following:

• Its vertex set is {U : U is a 1-dimension subspace in a 3-dimension space F3
q}.

• U,W are adjacent in ERq if and only if U and W (U 6= W ) are perpendicular as 1-dimension
subspace.

Obviously v(ERq) = q3−1
q−1 = q2 + q + 1.

We see each vertex U has degree q or q + 1, since there are exactly q2−1
q−1 = q + 1 many 1-

dimension subspaces W that are perpendicular to U . But there are q + 1 absolute vertices U ,
which means U ⊥ U and we do not allow loops. For such U , it has degree q. Also ERq is C4-free,
because given any two vertices U,W , there is exactly one line L perpendicular to both U and W .
Then we have

e(ERq) ≥
1

2
(q2(q + 1) + (q + 1)q) =

1

2
q(q + 1)2 = (

1

2
+ o(1))v(ERq)

3/2,

where v(ERq) = q2 +q+1 for primes q. By the number theory we know that for any large integer
n there exists a prime in the interval [n− n0.525, n]. Thus there exists an n-vertex C4-free graph
with at least (12 + o(1))n3/2 edges for any large n.
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1.2.1 New constructions of ex(n,C4)

Theorem 1.4 (Erdős-Rényi-Sós). ex(n,C4) ≥ (12 − o(1))n3/2.

Proof. We have seen that the Erdős-Rényi polarity graphs ERq can give this lower bound in
Theorem 1.3. Now we give a different construction for C4-free graphs which also yield the same
lower bound.

Suppose n = q2 − 1 for a prime q. Consider the following graph G = (V,E), where V =
F 2
q \ {0, 0}, E = {(x, y) ∼ (a, b)|ax + by = 1 over Fq}. First, we see G is C4-free: for any

distinct vertices (a, b) 6= (a′, b′), there is at most one solution(common neighbor) satisfying both
ax+ by = 1 and a′x+ b′y = 1. It is easy to see that the degree of each vertex is q or q − 1 since
we do not allow loops. So |E| ≥ 1

2(q2 − 1)(q − 1) ≈ (12 − o(1))n3/2 (where n = q2 − 1). The
above construction works when n is prime. But it known for every integer n there exists a prime
p satisfying n ≤ p ≤ (1 + o(1))n, the above lower bound applies to all values of n. We can get
ex(n,C4) ≥ (12 − o(1))n3/2.

Remark:

• Bondy-Simonovits: ex(n,C2k) ≤ 100kn1+1/k,

• 0.538n4/3 ≤ ex(n,C6) ≤ 0.627n4/3,

• ex(n,C10) = Θ(n6/5),

• For any t ≥ s ≥ 2, we have ex(n,Ks,t) = Os,t(n
2−1/s).

1.2.2 Constructions of ex(n,K3,3)

Theorem 1.5 (Brown).

ex(n,K3,3) ≥ (
1

2
− o(1))n5/3.

Proof. Let n = q3 for some odd prime q. Consider the following graph G with V (G) = F 3
q and

E(G) = {(x, y, z) ∼ (a, b, c)|(x−a)2 + (y− b)2 + (z− c)2 = d over Fq}, where d 6= 0 is a quadratic
residue1 if q = 4k − 1 and d is a quadratic non-residue if q = 4k − 3.

It is easy to check that G is K3,3-free. We should omit the detailed proof, instead we give
the following intuition : The K3,3-freeness is equivalent to the statement that any 3 unit spheres
have at most two common points. It is not hard to see that vertices (x, y, z) have q2 or q2 − 1
neighbors. Thus we have e(G) ≥ 1

2q
3(q2 − 1) ≈ (12 − o(1))n5/3 when n = q3.

1.3 Norm grahs

Lemma 1.6. Let K be a field and aij , bi ∈ K for 1 ≤ i, j ≤ 2 such that a1j 6= a2j. Then the
system of equations {

(x1 − a11)(x2 − a12) = b1

(x1 − a21)(x2 − a22) = b2

has at most two solutions (x1, x2) ∈ K ×K.

1there is an integer x such that x2 ≡ d (mod q).
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Proof. Considering the difference of two equations, we get (a11−a21)x2 +(a12−a22)x1 +a21a22−
a11a12 = b2 − b1. Since a11 − a21 6= 0, we can express x1 by an expression of x2. Substituting
this expression to any one of the equation, we get a quadratic equation in the variable x2. It has
at most two solutions for x2, each of which determines the valus of x1. So we have at most two
solutions (x1, x2) ∈ K ×K.

Lemma 1.7. Let K be a field with characteristic q. Then any x, y ∈ K satisfy (x+y)q = xq+yq.

Definition 1.8. Let q be a prime. The norm mapping N : Fqs → Fq is given by

N(x) = xxqxq
2
. . . xq

s−1

for any x ∈ Fqs .
Note that this is well-defined: since xq

s
= x for any x ∈ Fqs , we have (N(x))q = xqxq

2
. . . xq

s
=

N(x), implying that N(x) ∈ Fq.

Theorem 1.9 (Alon-Rónyai-Szabó). For every n = q3 − q2 where q is a prime power,

ex(n,K3,3) ≥
1

2
n5/3 +

1

3
n4/3 + C.

Proof. Let N : Fq2 → Fq be the norm mapping. The graph H = H(q, 3) is as follows. The vertex
set of H is Fq2 ×F ∗q and |V (H)| = q2(q− 1). Two vertices (A, a) and (B, b) in V (H) are adjacent
if and only if N(A + B) = ab. The degree of each vertex (A, a) ∈ V (H) is the number of pairs
(B, b) with N(A+B) = ab. For any B 6= −A, we can have a unique b. So the degree of (A, a) is
q2 − 1 or q2 − 2, as N(A + A) = a2 may happen. So we have |E(H)| ≥ 1

2

(
q2(q − 1)

)
(q2 − 2) ≥

1
2n

5/3 + 1
3n

4/3 + C.
Now it suffices to show H is K3,3-free, which is enough to show that for any three distinct

vertices (Di, di) with i ∈ [3], they have at most 2 common neighbors. That is, the system of
equations: 

N(X +D1) = xd1 (1.1)

N(X +D2) = xd2 (1.2)

N(X +D3) = xd3 (1.3)

has at most 2 solutions (X,x) ∈ Fq2 × F ∗q . Observe that if (X,x) is a solution, then:

1) X 6= −Di, for i ∈ [3], and

2) Di 6= Dj , for i 6= j.

Divide equations (1.1) and (1.2) by equation (1.3), we can get

di
d3

=
N(X +Di)

N(X +D3)
= N

(
X +Di

X +D3

)
= N

(
1 +

Di −D3

X +D3

)
, for i = 1, 2.

Let Y = 1
X+D3

, Ai = 1
Di−D3

, and bi = di
d3N(Di−D3)

, i ∈ [2]. Then,{
(Y +A1)(Y

q +Aq1) = N(Y +A1) = b1

(Y +A2)(Y
q +Aq2) = N(Y +A2) = b2

It is clear that A1 6= A2 and Aq1 6= Aq2. Then by lemma 1.6, this system has at most 2 solutions
(Y, Y q). Therefore, we have at most two pairs of (X,x).
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Theorem 1.10 (Alon-Rónyai-Szabó). H(q, s) is Ks,(s−1)!+1-free. Therefore, for t ≥ (s− 1)! + 1,

ex(n,Ks,t) = Θ(n2−1/s).

Proof. Exercise (similar to the proof of Theorem 1.7 for H(q, 3)).
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Lecture 2. Random Algebraic Constructions

In this lecture, we use random algebraic/polynomial construction to prove the following result,
which gives a weaker bound than Theorem 1.10.

Theorem 2.1. For any s, there exists C = C(s) such that for any t ≥ C, ex(n,Ks,t) =

Ωs,t(n
2− 1

s ).

Proof. Let q be a prime power, and Fq be the field of order q. Let s ≥ 4 be fixed and q � s. Let
d = s2 − s+ 2, and n = qs.

Definition 2.2. Let ~X = {x1, x2, ..., xs} ∈ F sq and ~Y = {y1, y2, ..., ys} ∈ F sq . Let P be all

polynomials f( ~X, ~Y ) of degree at most d in each of ~X and ~Y , that is,

f( ~X, ~Y ) =
∑
(~a,~b)

α
~a,~b
· xa11 x

a2
2 · · ·x

as
s · y

b1
1 y

b2
2 · · · y

bs
s ,

over all possible choices that
∑

i∈[s] ai ≤ d and
∑

j∈[s] bj ≤ d, where α
~a,~b
∈ Fq.

We choose a polynomial f ∈ P randomly at uniform and use it to define a bipartite graph Gf
on partition (F sq , F

s
q ) with edge set {( ~X, ~Y ) : f( ~X, ~Y ) = 0}. Note that v(Gf ) = 2qs = 2n. Then

by the linearity of expectation, E[e(Gf )] = n2/q = n2−1/s.

Lemma 2.3. For any ~u,~v ∈ F sq , P[f(~u,~v) = 0] = 1/q.

Lemma 2.4. Suppose r, s ≤ min{√q, d}. Let U ⊆ F sq and V ⊆ F sq be sets with |U | = s and
|V | = r. Then

P[f(~u,~v) = 0 for all ~u ∈ U, and ~v ∈ V ] = 1/qsr.

Fix U ⊆ F sq with |U | = s. Let I(~v) = 1 if ~v is adjacent to any ~u ∈ U, and otherwise I(~v) = 0.
Let XU = |N(U)|. Then XU =

∑
~v I(~v). We have

E[Xd
U ] = E[(

∑
~v∈F s

q

I(~v))d] =
∑

~v1,··· , ~vd∈F s
q

E[I(~v1)I(~v2) · · · I(~vd)] =
∑

1≤r≤d

(
qs

r

)
1

qrs
Mr

≤
∑
r≤d

Mr ,M,

where Mr is defined to the number of surjective mappings from [d] to [r].

Lemma 2.5. For all s, d, there exists a constant C such that if f1(~Y ), f2(~Y ), ..., fs(~Y ) are poly-
nomials over Y ∈ F sq of degree at most d, then

{~y ∈ F sq : f1(~y) = f2(~y) = ... = fs(~y) = 0}

has size either at most C or at least q − C√q ≥ q/2.

By lemma 2.5, if XU > C, then XU > q/2 implies

P[XU > C] = P[XU ≥
q

2
] = P[Xd

U ≥ (
q

2
)d] ≤

E[Xd
U ]

(q/2)d
≤ M

(q/2)d
.
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We say a set U of s vertices is bad if XU > C. Let u be the number of bad sets U of size s. So
we have E[u] ≤

(
qs

s

)
M

(q/2)d
= O(qs−2) and E[e(Gf )− nu] ≥ n2

q − nO(qs−2) ≥ n2

2q = 1
2n

2−1/s. Take

such a Gf and remove a vertex from every such s-subset to create a new graph G′. We see that
G′ is Ks,C+1-free, v(G′) ≤ 2n, and

e(G′) ≥ e(G)− u · n ≥ n2

q
−O(qs−2)n = (1− o(1))n2−

1
s .

Theorem 2.6 (Bukh-Conlon). For any rational number r ∈ (1, 2), there is a family of graphs Fr
such that ex(n,Fr) = Θ(nr).

Given a rooted tree T with a set R of roots, then pth power T p of T is the family of graphs
consisting of all possible unions of p distinct labelled copies of T , each of which agree on R.

Definition 2.7. The density of a rooted tree (T,R) is defined by

ρT =
e(T )

v(T )− |R|
.

For any S ⊆ V (T ) \R, define

ρS =
The number of edges incident to S

|S|
.

A rooted tree (T,R) is balanced if for any S ⊆ V (T ) \R, ρS ≥ ρT .

Theorem 2.8 (Bukh-Conlon). For large p, ex(n, T p) = Θ(n2−1/ρT ).
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Lecture 3. Dependent Random Choice

Theorem 3.1. Let H be a bipartite graph with bipartition (A,B) such that every vertex in A has
degree at most r. Then there exists a constant C = CH such that

ex(n,H) ≤ Cn2−1/r

Remark 3.2. This theorem was first proved by Füredi (1991) and then was reproved by Alon,
Krivelevich and Sudakov (2002).

We will give the proof of Alon-Krivelevich-Sudakov, which has been extended to a powerful
probabilistic tool called “dependent random choice”. The main idea of this is the following lemma:
If G has many many edges, then one can find a large subset A in G such that all small subsets of
A have many common neighbors.

Definition 3.3. For S ⊆ V (G), N(S) = {w ∈ V (G) : ws ∈ E(G) for every s ∈ S}.

Lemma 3.4 (Dependent random choice). Let u, n, r,m, t ∈ N and a real number α ∈ (0, 1) be
such that

nαt −
(
n

r

)(m
n

)t
≥ u

Then every n-vertex graph G with at least α
2n

2 edges contains a subset U of at least u vertices
such that every r-element subset S of U has at least m common neighbors.

Proof. Let T be a set of t vertices chosen uniformly at random from V (G) (allowing repetition).
Let A = N(T ). Then

E[|A|] =
∑
v∈V

P[v ∈ A] =
∑
v∈V

P[T ⊆ N(v)] =
∑
v∈V

(
d(v)

n

)t
≥ n

(
1

n

∑
v∈V

d(v)

n

)t
≥ nαt.

Call an r-element subset S ⊆ V (G) bad if |N(S)| < m. Given a bad r-set S ⊆ V (G), we have

P[S ⊆ A] = P[T ⊆ N(S)] =

(
|N(S)|
n

)t
<
(m
n

)t
.

Let s be the number of bad r-subsets in A, so

E[s] <

(
n

r

)(m
n

)t
,

E[|A| − s] ≥ nαt −
(
n

r

)(m
n

)t
≥ u.

Thus, there exists a choice of T such that A = N(T ) satisfies that |A|− s ≥ u. Let U be obtained
from A by deleting one vertex from each bad r-element subset in A. Then we have that |U | ≥ u
and U satisfies the condition.

Now we can prove the Theorem 3.1.
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Proof. (Theorem 3.1) Let H be a bipartite graph with bipartition (A,B) such that every vertex
in A has degree at most r. We want to show ex(n,H) ≤ Cn2−1/r, where C = CH is a constant.
Let G be any n-vertex graph with at least Cn2−1/r edges, where C satisfies

n(2Cn−1/r)r −
(
n

r

)(
|A|+ |B|

n

)r
≥ |B|.

By Lemma 3.4, taking u = |B|, m = |A|+ |B|, t = r, α = 2Cn−1/r, we see

nαt −
(
n

r

)(m
n

)t
≥ u.

So there exists a subset U with |U | ≥ u such that any r-element subsets of U has at least
m = |A|+ |B| common neighbors.

We label A = {v1, v2, ..., va} and B = {u1, u2, ..., ub}. We find any one-to-one mapping
φ : B → U , ui 7→ φ(ui). Next, we want to extend this φ from B to A ∪ B and then we can
find a copy of H in G. Suppose for A′ = {v1, v2, ..., vs}, we have φ : A′ ∪ B → V (G) such that
H[A′ ∪ B] ⊆ G[φ(A′) ∪ φ(B′)]. Consider vs+1 and NH(vs+1) ⊆ B, we have that NH(vs+1) ≤ r.
We consider φ(NH(vs+1)) ⊆ U of size at most r. By the property of U , φ(NH(vs+1)) has at least
|A|+ |B| common neighbors in G. Then we can get a vertex φ(vs+1) which is a common neighbor
of φ(NH(vs+1)) but is not in φ(A′ ∪ B). Repeatedly, we can extend φ to be φ : A ∪ B → V (G)
such that φ(A ∪B) is a copy of H, a contradiction.

A subdivision of a graph H is obtained from H by replacing each edge xy in H with a path
xPxyy such that all Pxys are distinct.

Theorem 3.5. Any n-vertex graph G with at least εn2 edges has a subdivision of a clique of size
at least ε3/2n1/2.

Proof. This is left to be an exercise.

Lemma 3.6 (Two-sided version of dependent random choice). Let G be a bipartite graph on 2n
vertices and with average degree d. Let U, V be two parts of G with |U | = |V | = n. If r, s, t ∈ N
such that

nr−s+s
2
d−s

2
(t− 1)s <

1

4
.

Then there exist X ⊆ U and Y ⊆ V of size at least 4−1/sn1−sds satisfying that every r-subset in
X(or in Y ) has a least t common neighbors in G(X,Y ).

A graph H is r-degenerate if any one of its subgraphs contains a vertex of degree at most r.

Theorem 3.7. Let r ≥ 2 and F be an r-degenerate bipartite graph whose largest part has size t.
Then there exists a constant C = C(F ) such that

ex(n, F ) ≤ C(t− 1)
1
2rn2−

1
4r .
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Proof. Let C be the constant such that (C2 )−4r
2
< 1

4 . Let G be a (2n)-vertex graph with e(G) >

C(t − 1)
1
2rn2−

1
4r . Thus, its average degree d > C

2 (t − 1)
1
2rn1−

1
4r . We know that there exists a

subgraph G′ of G, which is bipartite with parts U, V of size n and e(G′) ≥ e(G)/2. Let s = 2r.
It is easy to see that

nr−s+s
2
d−s

2
(t− 1)s <

1

4
,

since the choice of C and the inequality implies 4−1/sn1−sds ≥ t. By Lemma 3.6, we obtain that
there exist X ⊆ U and Y ⊆ V of size at least 4−1/sn1−sds satisfying that every r-subset in X(or
in Y ) has a least t common neighbors in G(X,Y ).

Let F be a bipartite graph on partition A ∪ B. Our goal is to construct an embedding
f : V (F )→ V (G) by placing images of vertices from A into X, and images of vertices of B into
Y . To construct the desired embedding, we proceed according to the chosen order (v1, . . . , vh)
of the vertices of F . If the current vertex vi ∈ V (F ), i ∈ [h] is a vertex from A, we first locate
the images f(vj), j < i, of the already embedded neighbours of vi in B. The set {f(vj) : j <
i, (vj , vi) ∈ E(H)} is a subset of Y of cardinality at most r. It therefore has at least t common
neighbours in X, and obviously not all of them have already been used in the embedding. We
pick one unused vertex w and set f(vi) = w. If vi ∈ B, we can repeat the above argument,
interchanging the roles of X and Y . We can find a copy of F in (X,Y ), a contradiction. So, we
have

ex(n, F ) ≤ C(t− 1)
1
2rn2−

1
4r .

Corollary 3.8. For any bipartite graph F , let dF = maxF ′⊆F
2e(F ′)
v(F ′) . Then

ex(n, F ) = O(n
2− 1

4bdF c ) = O(n
2− 1

4dF ).

Hint: It holds since F is bdF c-degenerate.

Corollary 3.9. For bipartite graph F , let

cF = min
F ′⊆F

v(F ′)

e(F ′)

and

c∗F = min
F ′⊆F,e(F ′)≥2,δ(F ′)≥1

v(F ′)− 2

e(F ′)− 1
.

Then
ex(n, F ) = Ω(n2−c

∗
F ) ≥ Ω(n2−cF ).
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Lecture 4. Lower bounds on Ramsey numbers

4.1 Lovász Local Lemma

Theorem 4.1 (Lovász Local Lemma (Symmetric Version)). Let {Ai}i∈[k] be a family of random
events. For any i, P[Ai] ≤ p. Any event is independent of all other events except for d of them.
If ep(d− 1) < 1, then the probability that all events’ complements occur simultaneously is greater
than 0, that is:

P
[⋂

Aci

]
> 0.

We focus on the asymmetric version of the Lovász Local Lemma, which is stronger than the
symmetric version. Firstly, we define the following auxiliary graph.

Definition 4.2. Let A = {A1, . . . , Ak} be a family of random events in the probability space Ω.
Let D := DA be the dependence graph with vertex set V (D) = A and edge set E(D) = {AiAj :
Ai and Aj are dependent for each i, j ∈ [k]}.

Theorem 4.3 (Lovász Local Lemma (Asymmetric Version)). Given a probability space (Ω,P),
the event collection A and the dependence graph D in Definition 4.2. Denote the neighborhood
set of Ai in D by N(Ai). If there exists a mapping f : A → [0, 1) satisfying that

P[Ai] ≤ f(Ai)
∏

B∈N(Ai)

(1− f(B))

holds for each Ai ∈ A, then the following holds:

P
[⋂

Aci

]
> 0.

4.2 Applications of Lovász Local Lemma

The Ramsey number r(k, `) is the smallest integer N such that any red-blue edge-coloring of KN

contains a red Kk or a blue K`.
Remark:

• Ramsey’s Theorem [3]: The Ramsey number exists.

• Erdős and Szekeres [2]: r(k, `) ≤
(
k+`−2
k−1

)
. If k = `, then this yields r(k, k) ≤ 4k.

• Campos, Griffiths, Morris and Sahasrabudhe [1]: There exists ε > 0 such that r(k, k) ≤
(4− ε)k.

Theorem 4.4.

r(3, `) = Ω

(
`2

log2 `

)
.

Proof. Consider a random edge-coloring of the complete graph Kn, where each edge is colored
red with probability p and blue with probability 1− p independently. Our goal is to obtain that
with positive probability there is a coloring without a red triangle and without a blue K`, since
this would establish the lower bound r(3, `) > n.

For each 3-element set T ⊆ [n], let AT be the event that T induces a red K3. Note that for
each T , we have P[AT ] = p3. For each `-element set S ⊆ [n], let BS be the event that S induces
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a blue K`. Note that for each `, we have P[BS ] = (1 − p)(
`
2). Let us now define a dependence

graph D for these events. We join two events of the form AT or BS , if the corresponding sets S
or T share an edge. Now we can bound the degrees in this graph,{

deg(AT ) ≤
(
3
2

)
(n− 3) +

(
3
2

)(
n−3
`−2
)
≤ 3n+

(
n
`

)
for each AT ,

deg(BS) ≤
(
`
2

)
n+

(
`
2

)(
n−3
`−2
)
≤
(
`
2

)
n+

(
n
`

)
for each BS .

Define a mapping f : {AT : T ∈
(
[n]
3

)
} ∪ {BS : S ∈

([n]
`

)
} → [0, 1) such that x := f(AT )

and y := f(BS). In order to use Lovász Local Lemma, we need to find positive real numbers
x, y ∈ (0, 1) such that {

p3 ≤ x(1− x)3n(1− y)(
n
`),

(1− p)(
`
2) ≤ y(1− x)n(

`
2)(1− y)(

n
`),

Let us now try to find such p, x, y ∈ (0, 1) for sufficiently large n. We choose y = 1

(n`)
, then

(1− y)(
n
`) ≈ 1

e . Furthermore, we observe that p and x need to fulfill the following inequalities:

p3 ≤ x(1− x)3n(1− y)n/2 ≤ x,

e−p(
`
2) ≈ (1− p)(

`
2) ≤ y(1− x)(

`
2)n(1− y)n/2 ≤ (1− x)(

`
2)n ≈ e−xn(

`
2).

Hence we need p ≥ xn ≥ p3n. Therefore p ≤ 1√
n

and x ≥ p3. Finally, for the second condition,
we note

e−p(
`
2) ≈ (1− p)(

`
2) ≤ y(1− x)(

`
2)n(1− y)n/2 ≤ y =

1(
n
`

) ≈ e−` logn,
hence p`2 ≥ p

(
`
2

)
≥ ` log n and therefore ` ≥ 1

p log n ≥
√
n log n.

Motivated by this we may assume ` ≥ 20
√
n log n and choose y = 1

(n`)
, x = 1

9n3/2 and p = 1
3
√
n

.

After choosing the constants, we can give the full proof. For sufficiently large n, we have

(1− y)(
n
`) =

(
1− 1(

n
`

))(n`)

≥ e−1.01,

(1− x)3n =

(
1− 1

9n3/2

)3n

≥ 1− 1

3
√
n
≥ e−0.01.

Thus,

p3 =
1

27n3/2
≤ 1

9n3/2
· 1

3
≤ 1

9n3/2
e−1.02 ≤ x(1− x)3n(1− y)(

n
`),

which establishes the first desired inequality.
For the second inequality, for sufficiently large n, we get

(1− x)(
l
2)n ≥ e−2xn(

l
2) ≥ e−

2
9
√
n(`

2).

Furthermore, using ` ≥ 20
√
n log n, we have

y =
1(
n
`

) ≥ 1

n`
= e−l logn ≥ e−l

2 1
20
√
n ≥ e−`(`−1)

1
19
√
n ≥ e−

1
9
√
n(`

2)+1.01
.
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Hence

(1− p)(
`
2) ≤ e−p(

`
2) = e

− 1
3
√
n(`

2) = e
− 1

9
√
n(`

2)+1.01
e
− 2

9
√
n(`

2)e−1.01 ≤ y(1− x)(
`
2)n(1− y)(

n
`),

which verifies the second desired inequality.
By Lemma 4.3, we obtain that

P

 ⋂
T∈([n]

3 )

AcT ∩
⋂

S∈([n]
` )

Bc
S

 > 0.

So for ` ≥ 20
√
n log n, we can find p, x, y such that there exists a 2 edge-coloring of Kn such

that there is no red triangle and there is no blue K`. This implies r(3, `) > n.

Note that n ≤ `2

(40 log `)2
implies

20
√
n log n ≤ 20

`

40 log `
log `2 = `.

Therefore we have r(3, `) ≥ `2

(40 log `)2
.

Theorem 4.5 (Erdős’ Lower Bound). Let C ≥ 1 and pC ∈ (0, 1/2] be the unique solution to

C = log pC
log(1−pC) . Let MC = p

−1/2
C . Then r(`, C`) = Ω(` ·M `

C). In particular, when C = 1, we have

pC = 1 and r(`, `) = Ω(`
√

2
`
).

Proof. Let p ∈ (0, 1/2]. Consider a random edge-coloring of the complete graph Kn, where each
edge is independently colored red with probability p and blue with probability 1− p. Let

f(n, p) := A(n, p) +B(n, p) where A(n, p) =

(
n

`

)
p(

`
2) and B(n, p) =

(
n

C`

)
(1− p)(

C`
2 ).

Note that
P[There exists a red K` or a blue KC`] ≤ f(n, p).

Hence, if f(n, p) = 1− o`(1), then there exists at least one such coloring with no red K` and
no blue KC`, implying r(`, C`) > n. It thus suffices to find the maximum value of n = n(p) such
that f(n, p) = o`(1). Assume this maximum is achieved at p0 = pC,`. Then,

∂f(n, p0)

∂p
=

(
`
2

)
p0

(
n

`

)
p
(`
2)

0 −
(
C`
2

)
1− p0

(
n

C`

)
(1− p0)(

C`
2 ) = 0.

Thus, we have logA(n, p0) = logB(n, p0)+O(log `). Solving this along with A(n, p0)+B(n, p0) =
1−o`(1), we obtain that logA(n, p0) = O(log `) and logB(n, p0) = O(log `). Therefore, we obtain
that − log p0 = 2 log(en/`)

`−1 +O
(
log `
`2

)
,

− log(1− p0) = 2 log(en/C`)
C`−1 +O

(
log `
`2

)
.

We then derive that p0 = pC+O(1/`), where the constant pC satisfies C = log pC
log(1−pC) . It follows

directly from the above that n = `
e · p

−(`−1)/2
0 · eO( log `

` ) = Θ(`) · (pC +O (1/`))−`/2 = Θ(` ·M `
C),

where MC := p
−1/2
C . This establishes r(`, C`) = Ω(` ·M `

C).
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