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Lecture 1. Constructions of Extremal Graphs

Given a graph H, a graph G is called H-free if G does not contain H as its subgraph. For general
graphs H, the Turdn number ex(n, H) is defined as follows:

ex(n, H) = max{e(G) : v(G) =n,H ¢ G}.

Ko6vari-Sés-Turdn Theorem tells us that for any bipartite H there exists ¢ > 0 such that ex(n, H) =
O(n?=¢). Now we will apply Randomized construction, Algebraic construction, and Randomized
Algebraic construction to obtain lower bounds of Turan numbers for bipartite graphs.

1.1 Randomized construction

Theorem 1.1. For any graph H with at least 2 edges, there exists a constant ¢ > 0 such that

Proof. (The idea is to use random graphs and the deletion/alternation method.) Consider a

v(H)—-2
random graph G' = G(n, p) where p = fne(H . Let h be the number of H-copies in G. Then we
e (0= 1)+ (0 — olt) + 1)
nn—1)---(n—v +
E[h] = e(H) < v(H)pe(H)
2] | Aut(H)| pro=nr

Since p = $n~ =1 and Ele(G)] = p(5), we get E[h] < E[e(G)]/2 which implies that

1 1 2 v(H
E G h > —-E [ e(H
€(6) 1] 2 5Ee(@] = o) = gn
. . 1 g-u)=2
Thus there exists an n-vertex graph G with e(G) —h > gzn” «-T.
Let G’ be obtained from G by deleting one edge for each copy of H in G. Then G’ is H-free
and

, 1 9_ v(H)—2
e(G") > e(G) —h > 16" (-1,
So
, 1 2_’U(H)72
ex(n,H) > e(G') > 6" e(H)-1,



Remark:
g 2k=2 1
e ex(n,Co,) = Q(n" 26-1) = Q(n "2-1).

92— s+t—2

o ex(n, Ky;) = Q(n™ st-1 ).

Definition 1.2. The 2-density of H is

Exercise:

e For any H with at least 2 edges,
91
ex(n, H) = Q(n~ m200)),

1.2 Algebraic construction

For C4, we have Reiman’s bound:
1
ex(n,Cy) < %(1 +V4dn —-3) = (5 + 0(1))n%.

Next, we will give the lower bound of ex(n,Cy) using algebraic construction. We can prove the
following theorem.

Theorem 1.3. ex(n,Cy) > (3 + o(1))n?/2.
Proof. For a prime g, we first define the Erdés-Rényi polarity graph ER, as following:
o Its vertex set is {U : U is a 1-dimension subspace in a 3-dimension space Fg}

e U, W are adjacent in ER, if and only if U and W (U # W) are perpendicular as 1-dimension

subspace.
. 3_
Obviously v(ER,) = qq_—ll =¢+q+1.
2
We see each vertex U has degree g or ¢ + 1, since there are exactly qq%ll = ¢ + 1 many 1-

dimension subspaces W that are perpendicular to U. But there are ¢ + 1 absolute vertices U,
which means U L U and we do not allow loops. For such U, it has degree q. Also ER, is Cy-free,
because given any two vertices U, W, there is exactly one line L perpendicular to both U and W.
Then we have

1 1 1
e(BRy) > 5(¢*(q+ 1) + (¢ + Do) = Sala + 1) = (5 + o(1)u(ERy)*?,
where v(ER,) = q*>+q+1 for primes ¢q. By the number theory we know that for any large integer

n there exists a prime in the interval [n — n%92° n]. Thus there exists an n-vertex Cy-free graph
with at least (3 + o(1))n?/? edges for any large n. ]



1.2.1 New constructions of ex(n,Cy)
Theorem 1.4 (Erdés-Rényi-Sés). ex(n,Cy) > (3 — o(1))n3/2.

Proof. We have seen that the Erdés-Rényi polarity graphs ER, can give this lower bound in
Theorem 1.3. Now we give a different construction for Cy-free graphs which also yield the same
lower bound.

Suppose n = ¢> — 1 for a prime q. Consider the following graph G = (V, E), where V =
F2\{0,0}, E = {(z,y) ~ (a,b)lax + by = 1 over Fy}. First, we see G is Cy-free: for any
distinct vertices (a,b) # (a’,1'), there is at most one solution(common neighbor) satisfying both
ar +by =1 and o’z + b'y = 1. It is easy to see that the degree of each vertex is ¢ or ¢ — 1 since
we do not allow loops. So |E| > 1(¢> = 1)(¢ — 1) = (1 — 0(1))n%? (where n = ¢*> — 1). The
above construction works when n is prime. But it known for every integer n there exists a prime
p satisfying n < p < (14 o(1))n, the above lower bound applies to all values of n. We can get
ex(n, Cy) > (3 — o(1))n*/2, ]

Remark:

e Bondy-Simonovits: ex(n, Ca,) < 100kn**+1/*,
e 0.538n%3 < ex(n, Cg) < 0.627n*/3,

e ex(n,Cg) = O(nb/5),

e For any t > 5 > 2, we have ex(n, K, ;) = Og¢(n?>71/%).

1.2.2 Constructions of ex(n, K33)

Theorem 1.5 (Brown).
1 .
ex(n, K33) > (5 — o(1))n’/3.

Proof. Let n = ¢* for some odd prime ¢q. Consider the following graph G with V(G) = Fg’ and
E(G) = {(z,y,2) ~ (a,b,¢)|(x —a)? + (y — b)? + (2 — ¢)> = d over F,}, where d # 0 is a quadratic
residue! if ¢ = 4k — 1 and d is a quadratic non-residue if ¢ = 4k — 3.

It is easy to check that G is K33-free. We should omit the detailed proof, instead we give
the following intuition : The K3 3-freeness is equivalent to the statement that any 3 unit spheres
have at most two common points. It is not hard to see that vertices (z,y, z) have ¢ or ¢*> — 1
neighbors. Thus we have e(G) > 1¢3(¢*> — 1) ~ (1 — 0(1))n®/? when n = ¢°. ]

1.3 Norm grahs

Lemma 1.6. Let K be a field and a;;,b; € K for 1 < 4,5 < 2 such that ay; # azj. Then the
system of equations

{ (x1 —a11)(z2 — a12) = b

(x1 — ag1)(x2 — age) = by

has at most two solutions (x1,x2) € K x K.

'there is an integer = such that > = d (mod q).



Proof. Considering the difference of two equations, we get (a11 — ag1)z2 + (a12 — age)x1 + azia9 —
ai1a12 = ba — by. Since a1 — a9 # 0, we can express 1 by an expression of zo. Substituting
this expression to any one of the equation, we get a quadratic equation in the variable zo. It has
at most two solutions for x5, each of which determines the valus of x;. So we have at most two
solutions (x1,z2) € K x K. ]

Lemma 1.7. Let K be a field with characteristic q. Then any z,y € K satisfy (x+y)? = x94y1.

Definition 1.8. Let ¢ be a prime. The norm mapping N : Fys — Fy is given by

N(x) = zxlz? 2T

for any x € Fis.

Note that this is well-defined: since 29" = x for any x € Fs, we have (N (z))? = 2iz? . 0 =
N(z), implying that N(z) € Fj.

Theorem 1.9 (Alon-Rényai-Szabd). For every n = ¢® — ¢* where q is a prime power,
1 1
wmjggziﬁﬁ+§ﬁm+a

Proof. Let N : F2 — I, be the norm mapping. The graph H = H(q, 3) is as follows. The vertex
set of H is Fjz x Ff and |V(H)| = ¢*(¢—1). Two vertices (A,a) and (B,b) in V(H) are adjacent
if and only if N(A + B) = ab. The degree of each vertex (A,a) € V(H) is the number of pairs
(B,b) with N(A+ B) = ab. For any B # —A, we can have a unique b. So the degree of (A, a) is
¢*—1or ¢* — 2, as N(A+ A) = a® may happen. So we have |E(H)| > 3 (¢*(¢—1)) (¢* — 2) >
T
Now it suffices to show H is K3 3-free, which is enough to show that for any three distinct

vertices (D;,d;) with i € [3], they have at most 2 common neighbors. That is, the system of
equations:

N(X + Dy) = zdy (1.1)

N(X + Dg) = zdy

N(X + D3) = xds

has at most 2 solutions (X, x) € Fyz x F;. Observe that if (X, ) is a solution, then:
1) X # —D,, for i € [3], and
2) D; # Dj, for i # j.

Divide equations (1.1) and (1.2) by equation (1.3), we can get

ﬂ_N(X—FDi)_ <X+Di>_N<1+Di—D3
ds  N(X + Ds) X+ Ds X + Ds

), fori=1,2.

1 1 d; .
Let Y = m,Al = Di—D3’ and bz = m,l S [2] Then,

Y+A)YI+A)=NY +4)=h
(Y + A9) (Y7 + Al) = N(Y + Ag) = by

It is clear that Ay # As and A? # A% Then by lemma 1.6, this system has at most 2 solutions
(Y,Y?). Therefore, we have at most two pairs of (X, z). ]



Theorem 1.10 (Alon-Rényai-Szabd). H(q,s) is K s—1y141-free. Therefore, fort > (s —1)I+1,
ex(n, Kqz) = O(n*71/9).

Proof. Exercise (similar to the proof of Theorem 1.7 for H (g, 3)). ]



Lecture 2. Random Algebraic Constructions

In this lecture, we use random algebraic/polynomial construction to prove the following result,
which gives a weaker bound than Theorem 1.10.

Theorem 2.1. For any s, there exists C = C(s) such that for any t > C, ex(n,Kg;) =
Qq(n2%).

Proof. Let g be a prime power, and Fj be the field of order g. Let s > 4 be fixed and ¢ > s. Let
d=s>—54+2 and n = ¢°.

Definition 2.2. Let X = {71, 22, ..., 25} € F; and Y = {v1,92, -, ys} € F;. Let P be all
polynomials f (X , }7) of degree at most d in each of X and }7, that is,

3 ai,..a as , b1, b bs
f(XjY):Zaag.xlleQ...xs .y11y22...ys,

over all possible choices that 3, a; < d and } ;1 bj < d, where a7 € F.

je€ls]
We choose a polynomial f € P randomly at uniform and use it to define a bipartite graph G

on partition (F, F)) with edge set {(X,Y): f(X,Y) = 0}. Note that v(Gy) = 2¢° = 2n. Then

by the linearity of expectation, E[e(G)] = n?/q = n>~1/,

Lemma 2.3. For any u,v € Fj, P[f(u,v) = 0] =1/q.

Lemma 2.4. Suppose r,s < min{,/q,d}. Let U C F; and V C F; be sets with |[U| = s and

\V| =r. Then
P[f(d,v) =0 for alli e U, and € V] =1/q".

Fix U C F; with |U| = s. Let I(¢v) = 1 if ¥ is adjacent to any @ € U, and otherwise I (%) = 0.
Let Xy = |[N(U)|. Then Xy = > I(¥). We have

where M, is defined to the number of surjective mappings from [d] to [r].
Lemma 2.5. For all s,d, there exists a constant C such that if fl(?),fg(?), ...,fs(}?) are poly-
nomials over Y € Fy of degree at most d, then
{yeF: f(§) = f2(§) = ... = fs(¥) = 0}
has size either at most C' or at least ¢ — C\/q > q/2.
By lemma 2.5, if X7 > C, then Xy > ¢/2 implies

P Xy > O] = P[ Xy > g] =PIX{ > (5




We say a set U of s vertices is bad if Xy > C. Let u be the number of bad sets U of size s. So

we have Efu] < (‘f)% = O(¢°7?) and Ele(Gf) — nu] > %2 —nO(¢*7?) > g—z = in?~1/s. Take

such a Gy and remove a vertex from every such s-subset to create a new graph G’. We see that
G is K, cy1-free, v(G') < 2n, and

n2 1
e(G)>e(G)—u-n> i O(¢* *)n = (1 —o(1))n*"s.

Theorem 2.6 (Bukh-Conlon). For any rational number r € (1,2), there is a family of graphs F,
such that ex(n, F,) = O(n").

Given a rooted tree T with a set R of roots, then p** power TP of T is the family of graphs
consisting of all possible unions of p distinct labelled copies of T', each of which agree on R.

Definition 2.7. The density of a rooted tree (T, R) is defined by

D)
PT= W(T) = IR

For any S C V(T) \ R, define

The number of edges incident to S

A rooted tree (T, R) is balanced if for any S C V(T)\ R, ps > pr.

Theorem 2.8 (Bukh-Conlon). For large p, ex(n, TP) = ©(n>~1/rr).



Lecture 3. Dependent Random Choice

Theorem 3.1. Let H be a bipartite graph with bipartition (A, B) such that every vertez in A has
degree at most r. Then there exists a constant C = Cp such that

ex(n, H) < Cn?~ V"

Remark 3.2. This theorem was first proved by Fiiredi (1991) and then was reproved by Alon,
Krivelevich and Sudakov (2002).

We will give the proof of Alon-Krivelevich-Sudakov, which has been extended to a powerful
probabilistic tool called “dependent random choice”. The main idea of this is the following lemma:
If G has many many edges, then one can find a large subset A in G such that all small subsets of
A have many common neighbors.

Definition 3.3. For S C V(G), N(S) = {w € V(G) : ws € E(G) for every s € S}.

Lemma 3.4 (Dependent random choice). Let u,n,r,m,t € N and a real number o € (0,1) be

such that
. <n> m\?
no — <—> >u
r n

Then every n-vertex graph G with at least %n2 edges contains a subset U of at least u vertices
such that every r-element subset S of U has at least m common neighbors.

Proof. Let T be a set of t vertices chosen uniformly at random from V(G) (allowing repetition).
Let A= N(T). Then

E[|A]=> PuecAl=> PITCN@)]=> (‘l(n“)) >n (i > d(n”)> > nat.

veV veV veV veV

Call an r-element subset S C V(G) bad if [N(S)| < m. Given a bad r-set S C V(G), we have

P[S C A] = P[T' C N(S)] = ('Ms)’)t < (T)t.

n n

Let s be the number of bad r-subsets in A, so

< () (2

E[|A| - 5] > na — (ﬁ) (%)t > u.

Thus, there exists a choice of T" such that A = N(T') satisfies that |A| —s > u. Let U be obtained
from A by deleting one vertex from each bad r-element subset in A. Then we have that |U| > u
and U satisfies the condition. 1

Now we can prove the Theorem 3.1.



Proof. (Theorem 3.1) Let H be a bipartite graph with bipartition (A, B) such that every vertex
in A has degree at most r. We want to show ex(n, H) < Cn?>~'/", where C' = Cy is a constant.
Let G be any n-vertex graph with at least Cn2~1/" edges, where C satisfies

r

By Lemma 3.4, taking u = |B|, m = |A| 4 |B|, t =7, a = 2Cn~ /" we see

nat — (Z) (%)t > u.

So there exists a subset U with |[U| > u such that any r-element subsets of U has at least
m = |A| + | B| common neighbors.

We label A = {v1,vs,...,0,} and B = {uj,u,...,up}. We find any one-to-one mapping
¢: B — U, uj — ¢(u;). Next, we want to extend this ¢ from B to AU B and then we can
find a copy of H in G. Suppose for A" = {v1,v9,...,v5}, we have ¢ : A’ U B — V(@) such that
H[A"U B] C G[p(A") U ¢(B')]. Consider vsy1 and Ny (vsy1) € B, we have that Ny (vsy1) < 7.
We consider ¢(Ng(vsy1)) C U of size at most r. By the property of U, ¢(Ng(vs+1)) has at least
|A| +|B| common neighbors in G. Then we can get a vertex ¢(vs41) which is a common neighbor
of ¢(Ng(vs+1)) but is not in ¢p(A’ U B). Repeatedly, we can extend ¢ to be ¢ : AUB — V(QG)
such that ¢(A U B) is a copy of H, a contradiction.

|

A subdivision of a graph H is obtained from H by replacing each edge xy in H with a path
2 Ppyy such that all P,,s are distinct.

Theorem 3.5. Any n-vertex graph G with at least en® edges has a subdivision of a clique of size
at least e3/2n1/2,

Proof. This is left to be an exercise. |

Lemma 3.6 (Two-sided version of dependent random choice). Let G be a bipartite graph on 2n
vertices and with average degree d. Let U,V be two parts of G with |U| = |V|=mn. Ifr,s,t € N

such that 1
rfs+s2dfs2 t— 1 s < =
n ( ) 1

Then there exist X CU andY C 'V of size at least 4~ Y/*n1=3d® satisfying that every r-subset in
X (orin'Y') has a least t common neighbors in G(X,Y).

A graph H is r-degenerate if any one of its subgraphs contains a vertex of degree at most r.

Theorem 3.7. Let r > 2 and F be an r-degenerate bipartite graph whose largest part has size t.
Then there exists a constant C' = C(F') such that

1

ex(n, F) < C(t — 1)zrn2 ar,



Proof. Let C be the constant such that (%)*4’“2 < 1. Let G be a (2n)-vertex graph with e(G) >
C(t — 1)%7127&. Thus, its average degree d > %(t - 1)%7117&. We know that there exists a
subgraph G’ of G, which is bipartite with parts U,V of size n and e(G’) > e(G)/2. Let s = 2r.

It is easy to see that
1

nrferstfsQ (t o 1)3 < -,
4
since the choice of C' and the inequality implies 4~ Y/$n1=5¢% > ¢. By Lemma 3.6, we obtain that
there exist X C U and Y C V of size at least 4~ 1/5n'=5d® satisfying that every r-subset in X (or
in Y') has a least ¢ common neighbors in G(X,Y).

Let F be a bipartite graph on partition A U B. Our goal is to construct an embedding
f:V(F)— V(G) by placing images of vertices from A into X, and images of vertices of B into
Y. To construct the desired embedding, we proceed according to the chosen order (vi,...,vp)
of the vertices of F. If the current vertex v; € V(F),i € [h] is a vertex from A, we first locate
the images f(v;), j < i, of the already embedded neighbours of v; in B. The set {f(v;) : j <
i,(vj,v;) € E(H)} is a subset of Y of cardinality at most r. It therefore has at least ¢ common
neighbours in X, and obviously not all of them have already been used in the embedding. We
pick one unused vertex w and set f(v;) = w. If v; € B, we can repeat the above argument,
interchanging the roles of X and Y. We can find a copy of F' in (X,Y’), a contradiction. So, we
have

ex(n, F) < C(t — 1)%712_%.

Corollary 3.8. For any bipartite graph F, let dp = maxp/cp 21)6((5)). Then

1
ex(n, F) = O(n27m) = 0(n2*4dp ).
Hint: It holds since F' is |dr]-degenerate.

Corollary 3.9. For bipartite graph F, let

()
Cp = 1Iin
F T FicE e(FY)
and
* . ’U(FI) -2
Cp = min Eea—
E prcrer>2,5r>1 e(F') — 1
Then

ex(n, F) = Q(n?=°F) > Q(n?=r).

10



Lecture 4. Lower bounds on Ramsey numbers

4.1 Lovasz Local Lemma

Theorem 4.1 (Lovész Local Lemma (Symmetric Version)). Let {A;}icy be a family of random
events. For any i, P[A;] < p. Any event is independent of all other events except for d of them.
Ifep(d — 1) < 1, then the probability that all events’ complements occur simultaneously is greater

than 0, that is:
P [ﬂ A;?} > 0.

We focus on the asymmetric version of the Lovasz Local Lemma, which is stronger than the
symmetric version. Firstly, we define the following auxiliary graph.

Definition 4.2. Let A= {A;,..., Ay} be a family of random events in the probability space (2.
Let D := D 4 be the dependence graph with vertex set V(D) = A and edge set E(D) = {A4;A; :
A; and A;j are dependent for each i, j € [k]}.

Theorem 4.3 (Lovédsz Local Lemma (Asymmetric Version)). Given a probability space (Q2,P),
the event collection A and the dependence graph D in Definition 4.2. Denote the neighborhood
set of A; in D by N(A;). If there exists a mapping f: A — [0,1) satisfying that

PlA] < f(4) ] (1-1(B)
BEN(A;)

holds for each A; € A, then the following holds:
P [ﬂ Aﬂ > 0.

4.2 Applications of Lovasz Local Lemma

The Ramsey number r(k, £) is the smallest integer N such that any red-blue edge-coloring of Ky
contains a red K} or a blue K.
Remark:

e Ramsey’s Theorem [3]: The Ramsey number exists.

e Erdés and Szekeres [2]: r(k, () < (k;;ff) If k = £, then this yields r(k, k) < 4.

e Campos, Griffiths, Morris and Sahasrabudhe [1]: There exists ¢ > 0 such that r(k, k) <
(4 —e)*.

Theorem 4.4.

52
og

Proof. Consider a random edge-coloring of the complete graph K,, where each edge is colored
red with probability p and blue with probability 1 — p independently. Our goal is to obtain that
with positive probability there is a coloring without a red triangle and without a blue Kj, since
this would establish the lower bound 7(3,¢) > n.

For each 3-element set T' C [n], let Az be the event that T induces a red K3. Note that for
each T, we have P[Ar] = p3. For each f-element set S C [n], let Bg be the event that S induces

11



a blue Ky. Note that for each ¢, we have P[Bg| = (1 — p)(g) Let us now define a dependence
graph D for these events. We join two events of the form Ar or Bg, if the corresponding sets S
or T share an edge. Now we can bound the degrees in this graph,

{deg(A )S()(n—S)—I—(?’)( )<3n+( ) for each Ar,
deg(Bg) < () - (z)(z :23) ()n+( ) for each Bg.

Define a mapping f : {Ar : T € ([g})} U{Bg: S € ([ZL})} — [0,1) such that = := f(Ar)
and y := f(Bg). In order to use Lovasz Local Lemma, we need to find positive real numbers
x,y € (0,1) such that

PP <a(l— )1 —y)0),
(1=p)&) < y(1 — )G (1 =),

Let us now try to find such p,z,y € (0,1) for sufficiently large n. We choose y = ﬁ, then
4

(1-— y)(?) ~ L. Furthermore, we observe that p and z need to fulfill the following inequalities:

PP <a(l-2)*(1-y)"? <,

e () ~ (1 - p) ) <y(1 - x)(ﬁ)n(l Cy)2 < (1 - 2)@)n s emm(a),

Hence we need p > zn > p3n. Therefore p < f and z > p?. Finally, for the second condition,
we note

e—P(é) ~ (1 —p)(g) < y(l _ -T)(é)n(l _ y)n/Q < y = L ~ e—flogn7

7
hence pf? > p(€> > (logn and therefore £ > 1 5 logn > Vnlogn.

Motivated by this we may assume £ > QOf logn and choose y = i+ L

_ 1 _
(2),1: = W andp— ﬁ
After choosing the constants, we can give the full proof. For sufficiently large n, we have

o L\ @) .
1—y)ld) = (1- < > e 101,
(1-y) ( (?)) >

QI L p——— 3n>1—71 > 7001
YT mi2Z) T T3 m

= 1 < 11 < 1
27n3/2 — 9n3/2 3 ~ 9n3/2
which establishes the first desired inequality.
For the second inequality, for sufficiently large n, we get

Thus,

e 1.02 < l‘(l - x)3n(1 . y)(?)

(1= )7 > ¢=2n() > 7w (5),

Furthermore, using ¢ > 20+/n log n, we have

1 1 _2_1 () 1
y—")zg_e“ognzel”ﬁze MUDwm > o
¢

12



Hence
(1 — p)(g) < @_p(g) = e_ﬁ(g) = e_ﬁ(g)—i_l'(ne_ﬁ(g)e*l'(n < y(l — 1‘)(5)”(1 — y)(?)

Y

which verifies the second desired inequality.
By Lemma 4.3, we obtain that

P| () 470 () B§| >o0.
re('y) se(%)
So for ¢ > 20y/nlogn, we can find p, z,y such that there exists a 2 edge-coloring of K,, such
that there is no red triangle and there is no blue K,. This implies 7(3,¢) > n.

Note that n < ﬁ implies
l
20y/nlogn < 2 log * = /.
0v/nlogn < 04010g€ og
Therefore we have r(3,¢) > S ]

(401og 0)2 -

Theorem 4.5 (Erdds’ Lower Bound). Let C' > 1 and pc € (0,1/2] be the unique solution to

C= logkgifgc)' Let M¢c = pgl/z. Then r(€,C0) = Q- M§). In particular, when C = 1, we have

pc =1 and r(¢,0) = Q(ﬁﬂz).
Proof. Let p € (0,1/2]. Consider a random edge-coloring of the complete graph K,,, where each
edge is independently colored red with probability p and blue with probability 1 — p. Let

4

Fn,p) = Alwp) + Bl p) where A(n,p) = () and Bp) = 7)1 - (%)

Note that
P[There exists a red K, or a blue K¢y < f(n,p).

Hence, if f(n,p) =1 — 0g(1), then there exists at least one such coloring with no red K, and
no blue K¢y, implying (¢, C'¢) > n. It thus suffices to find the maximum value of n = n(p) such
that f(n,p) = 0¢(1). Assume this maximum is achieved at py = pc¢. Then,

)4 Cce
Op po \()™°  1—po\Ct '
Thus, we have log A(n, pg) = log B(n,pg)+O(log £). Solving this along with A(n,po)+ B(n,po) =
1—o0¢(1), we obtain that log A(n, pg) = O(log¢) and log B(n,pg) = O(log ¢). Therefore, we obtain
that

—logpo =
—log(1 — po) = 28540 1 0 (151).

We then derive that pg = pc+O(1/£), where the constant p¢ satisfies C = bgk(”‘l’rifgc). It follows

directly from the above that n = % -pa(e_l)/Q O = o) - (pc + O (1/€))_£/2 =0 Mg),
where M := p;"/%. This establishes r(¢, C) = Q(¢ - ML) N

)

2log(en/f) log ¢
1 T 0 za
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