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Lecture 1 The regularity method and the blowup lemma

As we all know, the regularity methods are some of the most powerful tools in combinatorics, which played

a central role in graph theory, functional Analysis, ergodic theory and so on. Here, we firstly get to know

one of the most classical applications of regularity lemma.

Lemma 1.1 (Triangle removal lemma). For every ε > 0, there exists δ = δ(ε) > 0 such that the following

holds for large n. If G is an n-vertex graph with at most δn3 triangles, then G can be made K3-free by

removing at most εn2 edges.

Next we can obtain the general result by extending triangle to any graph H.

Lemma 1.2 (Graph removal lemma). For any graph H and any ε > 0, there exists δ = δ(ε) > 0 such that

any graph on n vertices which contains at most δnv(H) copies of H may be made H-free by removing at

most εn2 edges.

Let G = (V,E) be a graph. For disjoint sets X,Y ⊆ V (G), the edge-density between X and Y is

d(X,Y ) = e(X,Y )
∣X ∣∣Y ∣ .

Definition 1.3 (ε-regular). Given a graph G and some ε > 0, V1, V2 ⊆ V (G), V1 ∩ V2 = ∅. A pair (V1, V2)
is called ε-regular if for any A ⊆ V1 and B ⊆ V2 with ∣A∣ ≥ ε∣V1∣, ∣B∣ ≥ ε∣V2∣, then ∣d(A,B) − d(V1, V2)∣ < ε.

In particular, for convenience, we call a pair (V1, V2) (ε, d)-regular if it is ε-regular and d(V1, V2) = d.

Exercise 1.4. Given ε, c > 0 and V ′1 ⊆ V1 and V ′2 ⊆ V2 with ∣V ′i ∣ ≥ c∣Vi∣. If (V1, V2) is ε-regular, then (V ′1 , V ′2)
is ”also regular” (that is, max{2ε, ε/c}-regular).

Lemma 1.5 (K3-Counting lemma). For every ε > 0, the following holds for large n. Suppose that there

exist three disjoint vertex sets V1, V2, V3 with ∣Vi∣ ≥ n such that for any i, j ∈ [3], (Vi, Vj) is ε-regular and

d(Vi, Vj) ≥ 2ε. Then G[V1, V2, V3] contains at least (1 − 2ε)(d12 − ε)(d13 − ε)(d23 − ε)∣V1∣∣V2∣∣V3∣ triangles.
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Proof. Take V ′1 ⊆ V1 such that v ∈ V ′1 if and only if d(v, V2) < (d12−ε)∣V2∣ or d(v, V3) < (d13−ε)∣V3∣. Then we

claim that ∣V ′1 ∣ ≤ 2ε∣V1∣. Otherwise, if there exists a vertex set V12 ⊆ V1 with ε∣V1∣ vertices such that for any

v ∈ V12, d(v, V2) < (d12 − ε)∣V2∣, then we have d(V12, V2) < (d12−ε)∣V2∣∣V12∣

∣V12∣∣V2∣
= d12 − ε. But by the definition of ε-

regular, we have d(V12, V2) > d12−ε, a contradiction. Similarly, if there exists a vertex set V13 ⊆ V1 with ε∣V1∣
vertices such that for any v ∈ V13, d(v, V3) < (d13 − ε)∣V3∣, then we have d(V13, V3) < (d13−ε)∣V3∣∣V13∣

∣V13∣∣V3∣
= d13 − ε.

But by the definition of ε-regular, we have d(V13, V3) > d13 − ε, a contradiction. Thus, we derive that

∣V ′1 ∣ ≤ 2ε∣V1∣.
Now we consider the pair (N(u)∩V2,N(u)∩V3). Note that d(N(u)∩V2,N(u)∩V3) ∈ (d23−ε, d23+ε)

because N(u) ∩ V2 ⊆ V2 and N(u) ∩ V3 ⊆ V3. Take any vertex u ∈ V1 ∖ V ′1 . Since ∣N(u) ∩ V2∣ = d(u,V2) ≥
(d12 − ε)∣V2∣ ≥ ε∣V2∣ and ∣N(u) ∩ V3∣ = d(u,V3) ≥ (d13 − ε)∣V3∣ ≥ ε∣V3∣, we have

e(N(u) ∩ V2,N(u) ∩ V3) ≥ (d23 − ε) ⋅ ∣N(u) ∩ V2∣ ⋅ ∣N(u) ∩ V3∣

≥ (d23 − ε)(d12 − ε)∣V2∣(d13 − ε)∣V3∣.

Sum over all u ∈ V1 ∖ V ′1 , we get the number of K3 in G is at least

(1 − 2ε)∣V1∣ ⋅ (d23 − ε)(d12 − ε)∣V2∣(d13 − ε)∣V3∣ = (1 − 2ε)(d12 − ε)(d13 − ε)(d23 − ε)∣V1∣∣V2∣∣V3∣.

Remark 1.6.

• Extend to Kr-counting in regular r-tuples by induction.

• Extend to F -counting in regular X(F )-tuples, where X(F ) is the chromatic number of G.

Theorem 1.7 (Regularity lemma). For every ε > 0, t ∈ N, there exist N = N(ε, t) and T = T (ε, t) such that

the following holds for every n ≥ N . Every n-vertex graph G admits an ε-regular partition V0 ∪ V1 ∪ ⋅ ⋅ ⋅ ∪ Vr

with t ≤ r ≤ T ,

(1) ∣Vi∣ = ∣Vj ∣ for 1 ≤ i, j ≤ r,

(2) ∣V0∣ ≤ εn,

(3) (Vi, Vj) is ε-regular for all but at most εr2 pairs with i, j ∈ [r].

Remark 1.8.

• Only meaningful for dense graphs.

• T = T (ε, t) is the upper bound of r, guaranteeing the ”quality” of partition, but T is very large, which

is 22
2⋰

2

, where the height of the tower is a function of ε. Notice that the number of index is a function

of ε and Gowers showed that this is unavoidable.
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• Sometimes (or most of the time), you want to choose t large.

Proof of triangle removal lemma. For every ε > 0, let ε be small and n be large. Suppose that G is a

graph with less than δn3 triangles.

Apply the regularity lemma with t = 4/ε and δ = ε3

128T 3 . Let V0∪V1∪⋅ ⋅ ⋅∪Vr be the ε/4-regular partition
with t ≤ r ≤ T .

Next, we will perform the following operation:

• removing all edges incident to V0;

• removing all edges between irregular pairs;

• removing all edges inside each Vi with i ∈ [r];

• removing all edges for (Vi, Vj) with d(Vi, Vj) < ε/2.

Thus, we removed at most

εn

4
⋅ (n − 1) + εr2

4
⋅ (n − ∣V0∣

r
)
2

+ r ⋅ ((n − ∣V0∣)/r
2

) + (r
2
) ⋅ ε

2
(n − ∣V0∣

r
)
2

≤ εn

4
⋅ n + εr2

4
⋅ (n

r
)
2

+ r ⋅ (n
r
)
2

+ (r
2
) ⋅ ε

2
(n
r
)
2

= εn2

4
+ εn2

4
+ n2

2r
+ εn2

4

= 3εn2

4
+ n2

2r
≤ εn2

edges since r ≥ t = 4/ε.
Let G′ be the resulting graph. Now note that if G′ ⊇ K3, then there exist i, j, k such that this K3

belongs to Vi, Vj , Vk and (Vi, Vj), (Vi, Vk), (Vj , Vk) are all ε/4-regular with density ≥ ε/2. Then the K3-

Counting lemma implies that G′[Vi, Vj , Vk] has at least (1− ε/2)(dij − ε/4)(djk − ε/4)(dik − ε/4)∣Vi∣∣Vj ∣∣Vk∣ ≥
(1 − ε/2) ⋅ (ε/4)3 ⋅ (n−εn/4r )

3
> ε3

128T 3n
3 = δn3 triangles, which contradicts with assumption. Thus, G′ is

K3-free, that is, we obtain a K3-free graph G′ by removing at most εn2 edges from G.

Remark 1.9. Can we get better dependency between ε and δ? Improved bounds obtained by Fox (2011),

by iterating Frieze-Kannan weak regularity.

Other notable applications:

• RT (K4).

• If ∆(H) ≤∆, then r(H) = O(∣H ∣).

• Alon-Yuster theorem (by applying Blow-up lemma).
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Application: Ramsey-Turán Theory

Question: If graph G is K4-free and α(G) = o(n), then how many edges can G have? Szemerédi presented

the following result.

Theorem 1.10 (Szemerédi). For any ε > 0, there exists α > 0 such that the following holds for large n. If

G is a K4-free n-vertex graph and α(G) ≤ αn, then e(G) ≤ (18 + ε)n
2.

Proof. Let α = 2ε2

25T , t =
5
ε and regularize graph G with ε/5. Then we get the following partition:

• ∣V0∣ ≤ εn/5,

• For all 1 ≤ i < j ≤ r, ∣Vi∣ = ∣Vj ∣,

• (Vi, Vj) is ε/5-regular for all but at most εr2/5 pairs with i, j ∈ [r].

Claim 1.11. If (Vi, Vj) is ε-regular, then d(Vi, Vj) < 1
2 +

2ε
5 .

Proof. Suppose that d(Vi, Vj) ≥ 1
2 +

2ε
5 . Let V ′i ⊆ Vi be the vertices that have degree < (12 +

ε
5)∣Vj ∣ to Vj .

Then ∣V ′i ∣ ≤ ε
5 ∣Vi∣. Thus, we have ∣Vi ∖ V ′i ∣ ≥ (1 − ε

5)∣Vi∣ ≥ (1 − ε
5) ⋅ (1 −

ε
5)

n
r ≥

n
2T > αn. Since α(G) ≤ αn, we

can pick an edge uv in Vi ∖ V ′i . Since d(u,Vj), d(v, Vj) ≥ (12 +
ε
5)∣Vj ∣, we get

∣N(u) ∩N(v) ∩ Vj ∣ ≥
2ε

5
∣Vj ∣ >

2ε

5
⋅ (1 − ε

5
)n
r
> εn

5T
> αn.

Then we can pick an edge in N(u) ∩N(v), giving a K4 ⊆ G, a contradiction.

Next we define a d-Reduced graph R: Let R be a graph on [r] such that ij ∈ E(R) if and only if

(Vi, Vj) is (ε, d′)-regular with d′ ≥ d.
Let d = 3ε/5 and R be the d-reduced graph of the partition (V1, . . . , Vr).

Claim 1.12. R is K3-free.

Proof. Suppose not. Without loss of generality, there are three vertices 1,2,3 from V1, V2, V3 forming a K3 ⊆
R. Let V ′1 ⊆ V1 be vertex set such that for any vertex v ∈ V ′1 , d(v, V2) < (d − ε

5)∣V2∣ or d(v, V3) < (d − ε
5)∣V3∣.

Then ∣V ′1 ∣ ≤ 2ε
5 ∣V1∣.

Now we take a vertex u ∈ V1 ∖ V ′1 and let X = N(u) ∩ V2, Y = N(u) ∩ V3. Note that ∣X ∣ ≥ d(u,V2) ≥
(d− ε

5)∣V2∣ ≥ 2ε
5 ∣V2∣. Let X ′ ⊆X be the vertex set such that for any vertex w ∈X ′, d(w,Y ) < (d− ε)∣Y ∣. By

regularity, we get ∣X ′∣ ≤ ε∣V2∣, which implies that ∣X ∖X ′∣ ≥ ∣X ∣ − ε∣V2∣ ≥ ε∣V2∣.
Next we take any v2 ∈X ∖X ′, then

d(v2, Y ) ≥ (d −
ε

5
) ∣Y ∣ ≥ (d − ε

5
) ⋅ (d − ε

5
) ∣V3∣ ≥ (d −

ε

5
)
2

(
n − εn

5

r
) ≥ 2ε2

25T
n > αn.

Then we can pick an edge in N(v2, Y ) = N(vv2, V3), giving a K4 ⊆ G, a contradiction.
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Now we compute e(G) by counting the following five parts:

• all edges incident to V0, which is at most εn2/5,

• all edges between irregular pairs, which is at most εr2

5 ⋅ (
n
r )

2 = εn2/5,

• all edges inside each Vi with i ∈ [r], which is at most r ⋅ (n/r2 ) ≤
n2

2r ≤
n2

2t ,

• all edges for (Vi, Vj) with d(Vi, Vj) < d, which is at most (r2) ⋅ d(
n
r )

2 ≤ d
2n

2,

• all edges in R: Since R is K3-free, by Mantel’s theorem, e(R) ≤ r2

4 and each edge has density less

than 1
2 +

2ε
5 . So the number of edges in R is at most r2

4 ⋅ (
1
2 +

2ε
5 )(

n
r )

2 = (18 +
ε
10)n

2.

Adding all these up, we have

e(G) ≤ 2εn2/5 + n2

2t
+ dn2

2
+ (1

8
+ ε

10
)n2 ≤ (1

8
+ ε)n2.

Remark 1.13.

• Bollobás-Erdős found a graph saying that the bound 1/8 is sharp.

• This theorem appeared before the Regularity lemma.

Exercise 1.14. Prove Erdős–Stone–Simonovits Theorem: Fix graph H with at least one edge. Then

ex(n,H) = (1 − 1

χ(H) − 1 + o(1))(
n

2
).
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Lecture 2 The regularity method and the blowup lemma

In Lecture 1 we use an embedding scheme for proving the K3-counting lemma. If we do the embedding a

bit more carefully, then we can embed a subgraph of small linear size.

Lemma 2.1 (Graph embedding lemma). For any ∆, n,m ∈ N, let ε < (d−ε)
∆

∆+2 and m ≤ εn. Suppose that G

is a graph satisfying v(G) = V1 ∪ ⋅ ⋅ ⋅ ∪ Vr with ∣Vi∣ ≥ n for i ∈ [r] and (Vi, Vj) is (ε, d′)-regular, where d′ ≥ d
and i ≠ j ∈ [r]. Let H be an h-vertex r-partite graph with partition X1 ∪ ⋅ ⋅ ⋅ ∪Xr with maximum degree ∆

and ∣Xi∣ ≤m for i ∈ [r]. Then H ⊆ G.

Proof. Let v(H) = {x1, . . . , xh}, and let ϕ(i) ∈ [r] such that xi ∈ Xϕ(i). We will construct an embedding f

by defining V1 = f(x1), V2 = f(x2), . . . , vh = f(xh). Denote Ci(j) to be the set of possible candidates of vj

after we determine v1, v2, . . . , vi−1.

Now we embed Xi to Vi. Initially, Ci(j) = Vϕ(j). Suppose that we have determined v1, v2, . . . , vi−1

and we have ∣Ci(j)∣ ≥ (∆ + 1)εn for all j ≥ i. Then we need to select vi from Ci(i). Consider A = {xj ∈
NH(xi) ∶ j > i} = {xs1 , . . . , xsp}, p ≤ ∆. Since (Vϕ(i), Vϕ(sℓ)) is (ε, d′)-regular for ℓ ∈ [p], all but at most

εn vertices in Ci(i) have at least (d − ε)∣Ci(sℓ)∣ neighbors in Ci(sℓ) for ℓ ∈ [p]. Thus, there exist at least

∣Ci(i)∣ −∆εn vertices in Ci(i) have at least (d− ε)∣Ci(Sℓ)∣ neighbors in Ci(sℓ) for ℓ ∈ [p]. Among them, at

most m−1 ≤ εn−1 vertices are in {v1, v2, . . . , vi−1}. Then we can choose one vertex as vi ∉ {v1, v2, . . . , vi−1}
that has at least (d − ε)∣Ci(Sℓ)∣ neighbors in Ci(sℓ) for ℓ ∈ [p].

Let vi = f(xi). Next, we will make the following update. Let

Ci+1(j) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ci(j) ∩NG(vi) if xj ∼ xi,

Ci(j) if xj ≁ xi.

Since xj has at most ∆ neighbors, ∣Ci+1(j)∣ ≥ n(d− ε)∆ ≥ (∆+ 1)εn throughout the process. Thus, we can

always choose vi for i ≤ h. Then we obtain an embedding of H ⊆ G satisfying the partition.

Application: Ramsey Theory

Given a graph H, let r(H) = minn such that any edge-coloring of Kn contains a monochromatic copy of

H.

Theorem 2.2 (Chvátal - Rödl - Szemerédi - Trotter). Fix ∆ and let H be a graph with ∆(H) ≤∆. Then

there exists c = c(∆) such that r(H) ≤ c∣H ∣.

Proof. Let k = r(K∆+1). Take ε = 1
2∆+1k

, t = ∆ + 1. Assume that N = N(ε, t), T = T (ε, t) as defined in

regularity lemma. Let c = c(∆) = max{3T /ε,N}. Take n > c∣H ∣ = 3T ∣H ∣/ε. Next, we need to show that

every 2-edge-coloring of E(Kn) contains a monochromatic copy of H.
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Let G be the red graph. Applying the regularity lemma to G with ε, t, we can obtain an ε-regular

partition V0 ∪ V1 ∪ ⋅ ⋅ ⋅ ∪ Vr for G with ∣Vi∣ ≥ (1 − ε)nr ≥
2∣H ∣
ε for i ∈ [r], t ≤ r ≤ T . Consider a graph R on [r]

such that ij ∈ E(R) if and only if (Vi, Vj) is ε-regular. Then

∣E(R)∣ ≥ (r
2
) − εr2 ≥ (1 − 3ε)(r

2
) > (1 − 1

k − 1)(
r

2
).

By Turán’s theorem, R contains a copy of Kk.

Now color the edges of Kk in the following way: color ij red if d(Vi, Vj) has red density ≥ 1
2 , and

color blue otherwise. (Note that all pairs are ε-regular.) By the definition of k = r(K∆+1), there exists

a monochromatic copy of K∆+1 in this Kk. Then, V1, V2, . . . , V∆+1 are red(or blue) regular (∆ + 1)-tuple
and the pair (Vi, Vj) is ε-regular for i, j ∈ [∆ + 1]. Now we define graph G′ as the red(or blue) graph

on V1, . . . , V∆+1. Then G′ is a (∆ + 1)-partite graph on V1, . . . , V∆+1 such that (Vi, Vj) is (ε, d)-regular
with d ≥ 1

2 and ∣H ∣ ≤ ε∣Vi∣/2. Apply the Graph embedding lemma to G′ with d = 1
2 and m = ∣H ∣, we can

find a copy of H in G′, which gives a monochromatic copy of H. Thus, there exists c = c(∆) such that

r(H) ≤ c∣H ∣.

Question: What about embedding large subgraphs or spanning subgraphs?

Definition 2.3. Let G be a graph. A disjoint pair (A,B) of vertices is (ε, d)-super-regular if it’s ε-regular,
d(A,B) ≥ d and d(a,B) ≥ (d − ε)∣B∣, d(b,A) ≥ (d − ε)∣A∣ for all a ∈ A, b ∈ B.

Lemma 2.4. Let 2ε ≤ d ≤ 1 and n ≥ 2/ε. Let G be a graph. If (A,B) is (ε, d)-super-regular in G with

∣A∣ = ∣B∣ = n, then G[A,B] contains a perfect matching.

Theorem 2.5 (Blow-up lemma (Komlós-Sárközy-Szemerédi)). Let 0 < 1
n ≪ ε≪ 1

r , d0,
1
∆ ≤ 1. Suppose that

H is an n-vertex graph satisfying vertex partition X1 ∪ ⋯ ∪Xr with ∆(H) ≤ ∆. Let G be a graph with

partition V1 ∪ ⋯ ∪ Vr such that ∣Vi∣ = ∣Xi∣ = n and (Vi, Vj) is (ε, d′)-super-regular for d′ ≥ d. Then we can

embed H into G such that ϕ(Xi) = Vi.

Remark 2.6.

On the proof of the Blow-up lemma,

• the proof of the embedding lemma (greedy embedding) can embed an ε-proportion of vertices.

• a careful randomized embedding (random greedy embedding) can embed an (1 − ε)-proportion of ver-

tices, succeeding with high probability.

• if we run the randomized embedding carefully, we can apply Hall-type result for the remaining vertices

and obtain full embedding (Blow-up lemma).

Exercise 2.7. Suppose ε ≪ d ≤ 1. If (A,B) is (ε, d)-regular in G, then there exist A′ ⊆ A, B′ ⊆ B such

that ∣A′∣ ≥ (1 − ε)∣A∣, ∣B′∣ ≥ (1 − ε)∣B∣ and (A′,B′) is (2ε, d)-super-regular in G.
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Moving to hypergraph regularity

One of the main motivation of the hypergraph regularity is to understand/derive the hypergraph removal

lemma. Recall that for k ≥ 2, a k-uniform hypergraph H is a pair of (V,E), where V is a vertex set and E

is a family of k-element subsets of V . For the convenience, we usually use k-graph to denote the k-uniform

hypergraph.

Lemma 2.8 (Hypergraph removal lemma). For every r-graph H and ε > 0, there exists δ > 0 such that

every n-vertex r-graph with < δnv(H) copies of H can be made H-free by removing < εnr edges.

Next we will give the following result, which is a corollary of the tetrahedron removal lemma.

Corollary 2.9. If G is a 3-graph such that every edge is contained in a unique tetrahedron (i.e., a clique

on four vertices), then e(G) = o(n3).

Now let’s prove Roth’s theorem and Szemerédi’s Theorem for 4-AP. We write k-AP for k-term arith-

metic progression. We say that A is 3-AP-free if there are no x,x + y, x + 2y ∈ A with y ≠ 0.

Theorem 2.10 (Roth’s theorem). Let A ⊆ [N] be 3-AP-free. Then ∣A∣ = o(N).

Proof. Embed A ⊆ Z/MZ with M = 2N + 1 (to avoid wraparounds). Since A is 3-AP-free in Z, it is

3-AP-free in Z/MZ as well.

Now, we construct a tripartite graph G whose parts X, Y , Z are all copies of Z/MZ. The edges of

the graph are (since M is odd, we are allowed to divide by 2 in Z/MZ):

• (x, y) ∈X × Y whenever y − x ∈ A;

• (y, z) ∈ Y ×Z whenever z − y ∈ A;

• (x, z) ∈X ×Z whenever (z − x)/2 ∈ A.

In this graph, (x, y, z) ∈X × Y ×Z is a triangle if and only if

y − x, z − x
2

, z − y ∈ A.
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The graph was designed so that the above three numbers form an arithmetic progression in the listed

order. Since A is 3-AP-free, these three numbers must all be equal. So, every edge of G lies in a unique

triangle, formed by setting the three numbers above to be equal.

The graph G has exactly 3M = 6N + 3 vertices and 3M ∣A∣ edges. As every edge lies in a unique

triangle, G has exactly 3M ∣A∣/3 = M ∣A∣ = o(M3) triangles, and the triangle removal lemma says that G

can be made triangle-free by removing o(M2) edges. However, as every edge of G is in a unique triangle,

removing any edge destroys at most one triangle. That is, to make G triangle-free, one has to remove at

least M ∣A∣ edges. Therefore, we have M ∣A∣ = o(M2), yielding ∣A∣ = o(M) = o(N) and we are done.

In fact, Roth’s theorem is the first case of a famous result known as Szemerédi’s theorem.

Theorem 2.11 (Szemerédi’s theorem). For every fixed k ≥ 3, every k-AP-free subset of [N] has size o(N).

Proof of Szemerédi’s theorem for 4-AP. Let A ⊆ [N] be 4-AP-free. Let M = 6N + 1. Then A is also

a 4-AP-free subset in Z/MZ. Build a 4-partite 3-graph G with parts W , X, Y , Z, all of which are copies

of [M]. Define edges of G as follows, where w,x, y, z range over elements of W , X, Y , Z, respectively:

wxy ∈ E(G) ⇐⇒ 3w + 2x + y ∈ A,

wxz ∈ E(G) ⇐⇒ 2w + x − z ∈ A,

wyz ∈ E(G) ⇐⇒ w − y − 2z ∈ A,

xyz ∈ E(G) ⇐⇒ −x − 2y − 3z ∈ A.

What is important here is that the ith expression does not contain the ith variable.

The vertices xyzw form a tetrahedron if and only if

3w + 2x + y, 2w + x − z, w − y − 2z, −x − 2y − 3z ∈ A.

However, these values form a 4-AP with common difference −x − y − z −w. Since A is 4-AP-free, the only

tetrahedra in A are trivial 4-APs (those with common difference zero). For each triple (w,x, y) ∈W ×X×Y ,

there is exactly one z ∈ Z/MZ such that x+y+z+w = 0. Thus, every edge of the hypergraph lies in exactly

one tetrahedron.

By Corollary 2.9, the number of edges in the hypergraph is o(M3). On the other hand, the number

of edges is exactly 4M2∣A∣ (for example, for every a ∈ A, there are exactly M2 triples (w,x, y) ∈ (Z/MZ)3

with 3w + 2x + y = a). Therefore ∣A∣ = o(M) = o(N).
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Lecture 3 The hypergraph regularity

Definition 3.1 (Weak hypergraph regularity). Let H be a 3-graph, and A,B,C ⊆ V (H) be mutually

disjoint non-empty vertex set. Then the triple (A,B,C) is called (ε, d)-regular if ∣X ∣ ≥ ε∣A∣, ∣Y ∣ ≥ ε∣B∣, ∣Z ∣ ≥
ε∣C ∣ for all X ⊆ A,Y ⊆ B,Z ⊆ C and dH(X,Y,Z) = (1 ± ε)d (that is, ∣eH(X,Y,Z)∣ = (1 ± ε)d∣X ∣∣Y ∣∣Z ∣).

However, the weak regularity does not guarantee a counting lemma in general, which is the key

component in applications, e.g., in the proof of the removal lemmas. This can be seen from the following

example.

Example 3.2. Let V1, V2, V3, V4 be vertex sets of size n such that (Vi, Vi+1, Vi+2) is (ε, di)-regular for i = 1,2.
Let P = (v1, v2, v3, v4) be the 3-graph with edges v1v2v3 and v2v3v4. Then the number of P = (v1, v2, v3, v4)
with vi ∈ Vi is not necessarily (1 ± o(1))d1d2n4.

A k-graph F is linear if ∣e ∩ e′∣ ≤ 1 for all e, e′ ∈ E(F ).

Remark 3.3.

• Kohayakawa, Nagle, Rödl, Schacht proved that weak regularity guarantees F -counting iff F is a linear

k-graph.

This motivates us to consider stronger regularity notions that (at least) guarantees counting (which

then would suffice for removal lemma).

(Strong) hypergraph regularity

For cleaner notation, let us restrict our discussions to 3-graphs. Let (i, j)-graph denote the j-partite

i-graph. To better describe the partite structure, we need the following notation.

• P-partite hypergraph: Let P = (V1, V2, . . . , Vs) be a partition of V . A set S ⊆ V is P-partite if

∣S∩Vi∣ ≤ 1 for all i = 1, . . . , s. A hypergraph is P-partite if all of its edges are P-partite. It is S-partite
if it is P-partite for some ∣P∣ = S.

• Complex: The complex is a hypergraph H such that if e ∈ E(H) and e′ ⊂ e with e′ ≠ ∅, then
e′ ∈ E(H). A 3-complex is a hypergraph H such that if e ∈ E(H) with ∣e∣ ≤ 3 and e′ ⊂ e with e′ ≠ ∅,
then e′ ∈ E(H). Let H be a P-partite 3-complex. For i ≤ 3,X ∈ (Pi ), we write HX for the subgraph of

Hi induced by ∪X. For example, if X = {V1, V2, V3}, then HX = H{V1,V2,V3} = H3[V1 ∪ V2 ∪ V3]. Next
we use HX< to denote the downward closure of HX but then with edges of HX itself removed. Then

HX< is a (i − 1, i)-complex. For example, if X = {V1, V2, V3} and HX is a (3,3)-graph, then HX< is a

(2,3)-complex. In fact, if e ∈HX , then e′ ∈HX< for all e
′ & e and e′ ≠ ∅.
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• Relative density: the number of 3-edges in HX

the number of triangles in HX<
.

Let Hi be an (i, i)-graph and Hi−1 be an (i− 1, i)-graph on the same partition P. Let Ki(Hi−1) be a

family of P-partite i-sets forming a copy of complete (i − 1)-graph in Hi−1. Then the density of Hi

with respect to Hi−1 is defined as follows:

d(Hi∣Hi−1) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∣Ki(Hi−1)∩E(Hi)∣

∣Ki(Hi−1)∣
if ∣Ki(Hi−1)∣ > 0,

0 otherwise.

For example, for partition P = (V1, V2, V3), if H2 is a (2,3)-graph and H3 is a (3,3)-graph, then

d(H3∣H2) =
∣K3(H2) ∩E(H3)∣
∣K3(H2)∣

= triangle ∩ 3-edges

the number of triangles
.

More generally, if
Ð→
Q = (Q1, . . . ,Qr) is a collection of r subhypergraphs of Hi−1, then we define

Ki(
Ð→
Q) = ⋃r

j=1Ki(Qj) and

d(Hi∣
Ð→
Q) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∣Ki(
Ð→
Q)∩E(Hi)∣

∣Ki(
Ð→
Q)∣

if ∣Ki(
Ð→
Q)∣ > 0,

0 otherwise.

Definition 3.4 (i-th level is regular with respect to the (i − 1)-th level). An (i, i)-graph Hi is (di, ε, r)-
regular with respect to Hi−1 if for all r-tuples

Ð→
Q with ∣Ki(

Ð→
Q)∣ > ε∣Ki(Hi−1)∣, we have d(Hi∣

Ð→
Q) = di ± ε.

Definition 3.5 (Complex regular). Given s ≥ 2 and a (2, s)-complex H with a partition P, we say that H

is (d2, ε, r)-regular if for all A ∈ (P2), HA is (d2, ε)-regular with respect to (HA<).
Given s ≥ 3 and a (3, s)-complex H with a partition P, we say that H is (d, d2, ε3, ε, r)-regular if

• for all A ∈ (P2), HA is (d2, ε)-regular with respect to (HA<) or d(HA∣HA<) = 0,

• for all A ∈ (P3), HA is (d, ε3, r)-regular with respect to (HA<)2 or d(HA∣(HA<)2) = 0.

Lemma 3.6 (Restriction). Let s, r,m ∈ N, α, d2, d, ε, ε3 > 0 such that 1
m ≪

1
r , ε ≤min{ε, d2} ≤ ε3 ≪ α≪ d, 1s .

Let H be a (d, d2, ε3, ε, r)-regular (3, s)-complex with vertex classes V1, . . . , Vs of size m. For each i, let

V ′i ⊆ Vi be a set of size at least αm. Then the restriction H ′ =H[V ′1 ∪ ⋅ ⋅ ⋅ ∪V ′s ] is (d, d2,
√
ε3,
√
ε, r)-regular.

For the following two definitions, suppose that G is a (3, ℓ)-complex with parts (V1, . . . , Vℓ) and H is

a (3, ℓ)-complex with parts (X1, . . . ,Xℓ).

Definition 3.7. We say that G respects the partition of H if whenever H contains an i-edge with vertices

in Xj1 , . . . ,Xji, then there is an i-edge of G with vertices in Vj1 , . . . , Vji.
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Definition 3.8. A labeled copy of H in G is partition-respecting if for all i ∈ [ℓ], the vertices corresponding

to those in Xi lie within Vi.

In general, we denote the number of labeled partition-respecting copies of H in G by ∣H ∣G.

Lemma 3.9 (Extension lemma). Let r, b, b′,m0 be integers, b′ < b, and let 1
m0
≪ {1r , ε} ≪ c≪min{ε3, d2} ≤

ε3 ≪ θ, 1ℓ , d,
1
b , with 1

d2
∈ N. The following holds for m ≥ m0: Suppose that G is a (3, ℓ)-complex on b

vertices with classes X1, . . . ,Xℓ, and let G′ be an induced subcomplex of G on b′ vertices. Suppose H∗ is

a (d, d2, ε3, ε, r)-regular (3, ℓ)-complex with vertex classes V1, . . . , Vℓ, each of order m, which respects the

partition of G. Then all but at most θ∣G′∣H∗ labeled partition-respecting copies of G′ in H∗ can extend to

at least cmb−b′ labeled partition-respecting copies of G in H∗.

Remark 3.10 (Counting).

• If b′ = 0, one has counting: H∗ contains (1 ± ε)d∣e(G3)∣d
∣e(G2)∣

2 mb = cmb labeled partition-respecting

copies of G.

• One can think of the extensions as the “rooted-counting”, that is, counting copies of G with prescribed

vertices (root vertices).
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Lecture 4 The hypergraph regularity lemma and its applications

Before giving the regularity lemma of Rödl and Schacht, we introduce some notations. Let V be the vertex

set and P(1) = (V1, . . . , Vt) be a partition of V , where Vi is cluster for i ∈ [t].

Definition 4.1. For all j ∈ [3], let Crossj = Crossj(P (1)) denote the set of all crossing j-subsets of V . For

all A ⊆ [t], let CrossA denote all crossing subsets of V that meet Vi if and only if i ∈ A.

Suppose that PA is a partition of CrossA, where the parts are called cells and P(2) is the union of all

PA with ∣A∣ = 2 (so P(2) partitions Cross2).

Definition 4.2. Given P = {P (1), P (2)}, a family of partitions on V , and K = vivjvk with vi ∈ Vi, vj ∈ Vj,

vk ∈ Vk, the polyad (or triad) P(K) is a (2,3)-graph (i.e., 3-partite 2-graph) on Vi ∪ Vj ∪ Vk with edge set

C(vi, vj) ∪C(vi, vk) ∪C(vj , vk) where C(vi, vj) is the cell in Pij that contains vivj.

We say that P(K) is called (d2, δ)-regular if all C(vi, vj),C(vi, vk),C(vj , vk) are (d2, δ)-regular with
respect to their underlying sets. Let P̂(2) be the family of all P(K) for K ∈ Cross3.

Lemma 4.3 (Regularity lemma, Rödl-Schacht, similar to Frankl-Rödl). For all ε3 > 0, t0 ∈ N and functions

r ∶ N → N and ε ∶ N → (0,1], there exists d2 > 0 such that 1
d2
∈ N and T,n0 ∈ N such that 1

d2
≤ T and n ≥ n0

and T !∣n, and the following holds. Let H be a 3-graph of order n. Then there exists P = {P(1),P(2)} of V
such that

• P(1) = {V1, . . . , Vt} is a partition of V into t clusters of equal size, t0 ≤ t ≤ T .

• P(2) partitions Cross2 into at most T cells.

• for all K ∈ Cross3, P(K) is (d2, ε(T ))-regular.

• H is (⋅, ε3, r)-regular with respect to all but at most ε3t
3( 1

d2
)3 polyads, i.e., members of P̂(2).

Next we will present two important applications of hypergraph regularity, of which the graph version

we have proved in the first two lectures.

Application 1: the F -removal lemma.

Theorem 4.4 (F -removal lemma). Let F be a 3-graph on b vertices and α > 0. Then there exists δ =
δ(α) > 0 such that the following holds. If a 3-graph H with n vertices has less than δnb copies of F , then

H can be made F -free by removing less than αn3 edges.

Proof. Given a 3-graph F with vertex set [b]. We start with choosing the following constants:

1

n
≪ 1

m0
≪ {1

r
, ε} ≪ c≪min{ε3, d2} ≤ ε3,

1

t0
≪ d,

1

b
.
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We further take α = 2d and δ = c/(2T b). Let H be an n-vertex 3-graph, and we show that either H can be

made F -free by removing αn3 edges, or it has δnb copies of F .

We apply the regularity lemma to H with input parameter t0 and ε3, and with possibly at most

(T ! − 1) vertices removed, and obtain a family of partitions P = {P(1),P(2)}, where P(1) = {V1, V2, . . . , Vt}
and P(2) is a partition of Cross2.

We now proceed the clean step: we remove an edge e from H if

• e ∈ E(H) not supported on any polyad (as t ≥ t0 is large, there are at most T !n2 + (n/t)2n ≤ n3/t0
such edges).

• e ∈ E(H) supported on a polyad P , but H is not regular with respect to P, (so the number of edges

is ≤ ε3t3( 1
d2
)3 ⋅ (d32 +O(ε3)) ⋅ (nt )

3 ⋅ 1 = 2ε3n3 by combining the counting lemma for graphs).

• e ∈ E(H) supported on a polyad P , and H is (d′, ε3, r)-regular with respect to P, but d′ < d (so the

number of edges is ≤ (t3) ⋅ (
1
d2
)3 ⋅ (d32 +O(ε3)) ⋅ (nt )

3 ⋅ d ≤ dn3).

Altogether, as 1/t0, ε3 ≪ d, we removed at most 2dn3 edges of H. Let H ′ be the resulting graph after

deleting these edges of H. Does H ′ contain a copy of F?

• If no, then we are done.

• If yes, then H ′ contains a copy of F , and this copy of F defines a (d, d2, ε3, ε, r)-regular complex

H∗ (by taking the cells that intersect the shadow of F ), and H∗ respects the partition of F . By

Extension/Counting lemma, we derive that H∗ has ≥ c(n−T !
t )

b ≥ (c/2T b)nb copies of F , and we are

also done.

Application 2: Bounded-degree 3-graphs have linear Ramsey number.

(Cooley-Fountoulakis-Kühn-Osthus, Nagle-Olsen-Rödl-Schacht)

Similar to the proof of the graph case, we need to define the reduced 3-graph. However, this definition is

indeed not unique and quite depends on the context (the problem). For our Ramsey-type problem, we use

the following definition.
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Definition 4.5 (Fruitful). A triple of clusters V1, V2, V3 is fruitful if G is (ε3, r)-regular with respect to

all but ≤ √ε3-fraction of all polyads P̂(2) induced on V1, V2, V3. Define R to be the reduced 3-graph with

vertices {V1, . . . , Vt} and edges as the fruitful triples.

Lemma 4.6. All but ≤ 2√ε3a31 of the triples of clusters are fruitful.

To complete the proof of Ramsey number problem, we use the following two lemmas with j = 3.

Lemma 4.7 (Embedding lemma for hypergraphs). Let ∆, ℓ, r, n0 be positive integers with 3 ≤ ℓ and let

c, d, d2, ε, ε3 be positive constants such that 1/d,1/d2 ∈ N,1/n0 ≪ 1/r, ε ≪ min{ε3, d} ≤ ε3 ≪ d2,1/∆,1/ℓ
and c ≪ d, d2,1/∆,1/ℓ. Then the following holds for all integers n ≥ n0. Suppose that H is an ℓ-partite

3-uniform hypergraph of maximum degree at most ∆ with vertex classes X1, . . . ,Xℓ such that ∣Xi∣ ≤ cn for

all i = 1, . . . , ℓ. Suppose that for each i = 2,3, Gi is an ℓ-partite i-uniform hypergraph with vertex classes

V1, . . . , Vℓ, which all have size n. Suppose also that G3 is (d2, ε3, r)-regular with respect to G2, that G2 is

(d2, ε)-regular, and that (G3,G2) respects the partition of H. Then G3 contains a copy of H.

Lemma 4.8 (Slicing lemma). Let j ≥ 2 and s0, r ≥ 1 be integers and let δ0, d0 and p0 be positive real

numbers. Then there is an integer n0 = n0(j, s0, r, δ0, d0, p0) such that the following holds. Let n ≥ n0 and

let Gj be a j-partite j-uniform hypergraph with vertex classes V1, . . . , Vj which all have size n. Also let Gj−1
be a j-partite (j−1)-uniform hypergraph with the same vertex classes and assume that each j-set of vertices

that spans a hyperedge in Gj also spans a K
(j−1)
j−1 in Gj−1. Suppose that

1. ∣Kj(Gj)∣ > nj/ lnn and

2. Gj is (d, δ, r)-regular with respect to Gj−1, where d ≥ d0 ≥ 2δ ≥ 2δ0.

Then for any positive integer s ≤ s0 and all positive reals p1, . . . , ps ≥ 0 with ∑s
i=1 pi ≤ 1 there exists a

partition of E(Gj) into s + 1 parts E(0)(Gj),E(1)(Gj), . . . ,E(s)(Gj) such that if Gj(i) denotes the spanning

subhypergraph of Gj whose edge set is E(i)(Gj), then Gj(i) is (pid,3δ, r)-regular with respect to Gj−1 for

every i = 1, . . . , s. Moreover, Gj(0) is ((1 −∑s
i=1 pi)d,3δ, r)-regular with respect to Gj−1 and E(0)(Gj) = ∅ if

∑s
i=1 pi = 1.

The hypergraph Ramsey number R(H) of a k-grpah H is the smallest n ∈ N such that for every 2-

colouring of the hyperedges of the complete k-graph on n vertices one can find a monochromatic copy of

H. The maximum degree of H is the maximum number of hyperedges containing any vertex in H.

Theorem 4.9. For all ∆, there exists a constant C = C(∆) such that all 3-graphs H of maximum degree

at most ∆ satisfy R(H) ≤ C ∣H∣.

Proof. Given ∆, choose large constant C. Consider complete 3-graph K
(3)
m , m = C ∣H ∣. Given a red/blue

coloring of E(K(3)m ). Let Gred be the red subgraph and assume that e(Gred) ≥ 1
2
(m
3
). Apply Regularity
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lemma to Gred with ε3 ≪ 1
∆ , obtaining a family of partitions P = {P(1),P(2)}, where P(1) = {V1, . . . , Vt}

and t is large (e.g., t ≥ ℓ ∶= R(K(3)3∆ )).
Let R be the reduced hypergraph. By Lemma 4.6, we have

e(R) ≥ (1 − o(1))(∣R∣
3
) >
⎛
⎝
1 − 1

(ℓ
3
)
⎞
⎠
(∣R∣
3
).

Now we claim thatR contains a copy ofK
(3)
ℓ . Assume for the sake of contradiction thatR isK

(3)
ℓ -free. Then

for each ℓ-subset S of V (R), we have e(R[S]) ≤ (ℓ3)−1. But note that e(R) = (
∣R∣−3
ℓ−3
)−1∑S⊂V (R),∣S∣=ℓ e(R[S]).

Thus, we have e(R) ≤ (∣R∣−3ℓ−3
)−1(∣R∣

ℓ
) ((ℓ

3
) − 1) . Observe that (∣R∣−3ℓ−3

)−1(∣R∣
ℓ
)(ℓ

3
) = (∣R∣3 ), which yields the desired

contradiction. Without loss of generality, assume it’s on V1, . . . , Vℓ. Choose a (2, ℓ)-complex S on V1, . . . , Vℓ

such that S is a union of cells of P(2) and Gred is regular with respect to S. For each i, j ∈ [ℓ], choose a

cell on Vi × Vj uniformly at random ( 1
d2

choices).

Fix Vi, Vj , Vk with i, j, k ∈ [ℓ], as ViVjVk ∈ E(R), it is fruitful, Gred is (ε3, r)-regular with respect to

≥ (1−√ε3) ( 1
d2
)
3
of the polyads on Vi, Vj , Vk. As we choose each cell uniformly at random, the probability

that Gred is regular with respect to S[Vi, Vj , Vk] is ≥ 1 − √ε3, and Gred is regular with respect to S is

≥ 1 − √ε3(ℓ3) >
1
2 as ε ≪ 1

ℓ . Now color hyperedge ViVjVk red if d(Gred/S[Vi, Vj , Vk]) ≥ 1
2 , and color blue

otherwise. Since ℓ = R(K(3)3∆ ), we find a monochromatic copy K of K
(3)
3∆ in K

(3)
ℓ . Fix a (3∆)-vertex-coloring

of H such that for each edge of H, all vertices get distinct colors (exists by greedy coloring). First suppose

it is red, we want to embed H as a (3,3∆)-graph to K. By assumption, Gred is (⋅, ε3, r)-regular with

respect to each polyad of K, and it is partition-respecting with respect to H as it is complete.

The only issue is that the densities are different, which can be dealt with by a simple probabilistic

argument (by Slicing lemma). By the embedding lemma, find a copy of H in Gred. On the other hand,

if K is blue, we need to prove that Gblue is regular with respect to all chosen polyads S. So suppose Q =
(Q(1), . . . ,Q(r)) is an r-tuple of subhypergraphs of one of these polyads S, satisfying ∣K3(Q)∣ > ε3∣K3(S)∣.
Let ds be such that Gred is (ds, ε3, r)-regular with respect to S. Then

∣(1 − ds) − d(Gblue ∣ Q)∣ = ∣ds − (1 − d(Gblue ∣ Q))∣ = ∣ds − d(Gred ∣ Q)∣ < ε3.

Thus Gblue is (1 − ds, ε3, r)-regular with respect to S (note that ε3 < 1
2 < 1 − ds). Following the same

argument as in the previous case, we add E(G′blue)∩K3(S) to the subcomplex of S induced by the clusters

in K to derive the regular (3,3∆)-complex Sblue to which we can apply the embedding theorem to obtain

a copy of H in Gblue.

It remains to check that we can choose C to be a constant depending only on ∆. Note that the

constants and functions d′, ε3, r, and θ we defined at the beginning of the proof all depend only on ∆. So

this is also true for the integers n0 and t. Note that in order to apply the regularity lemma to Gred, we

need m ≥ n0, where m = C ∣H ∣. This is certainly true if we set C ≥ n0. The embedding theorem allows us
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to embed subcomplexes of size at most cn, where n is the cluster size and where c satisfies c≪ 1
a1
, ε3,

1
(3∆) .

Thus c too depends only on ∆. In order to apply the embedding theorem, we need that n ≥ n0, where n0

as defined in the embedding theorem depends only on ∆ and k. Since the number of clusters is at most

t, this is satisfied if m ≥ tn0, which in turn is certainly true if C ≥ tn0. When we applied the embedding

lemma to H, we needed that ∣H ∣ ≤ cn. Since

n = m

a1
= C ∣H ∣

a1
≥ C ∣H ∣

t
,

it suffices to choose C ≥ t
c for this. Altogether, this shows that we can define the constant C in Theorem 4.9

by

C ∶=max{tn0, t/c}.
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