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Lecture 4 The hypergraph regularity lemma and its applications

Before giving the regularity lemma of Rödl and Schacht, we introduce some notations. Let V be the vertex

set and P(1) = (V1, . . . , Vt) be a partition of V , where Vi is cluster for i ∈ [t].

Definition 4.1. For all j ∈ [3], let Crossj = Crossj(P (1)) denote the set of all crossing j-subsets of V . For

all A ⊆ [t], let CrossA denote all crossing subsets of V that meet Vi if and only if i ∈ A.

Suppose that PA is a partition of CrossA, where the parts are called cells and P(2) is the union of all

PA with ∣A∣ = 2 (so P(2) partitions Cross2).

Definition 4.2. Given P = {P (1), P (2)}, a family of partitions on V , and K = vivjvk with vi ∈ Vi, vj ∈ Vj,

vk ∈ Vk, the polyad (or triad) P(K) is a (2,3)-graph (i.e., 3-partite 2-graph) on Vi ∪ Vj ∪ Vk with edge set

C(vi, vj) ∪C(vi, vk) ∪C(vj , vk) where C(vi, vj) is the cell in Pij that contains vivj.

We say that P(K) is called (d2, δ)-regular if all C(vi, vj),C(vi, vk),C(vj , vk) are (d2, δ)-regular with
respect to their underlying sets. Let P̂(2) be the family of all P(K) for K ∈ Cross3.

Lemma 4.3 (Regularity lemma, Rödl-Schacht, similar to Frankl-Rödl). For all ε3 > 0, t0 ∈ N and functions

r ∶ N → N and ε ∶ N → (0,1], there exists d2 > 0 such that 1
d2
∈ N and T,n0 ∈ N such that 1

d2
≤ T and n ≥ n0

and T !∣n, and the following holds. Let H be a 3-graph of order n. Then there exists P = {P(1),P(2)} of V
such that

• P(1) = {V1, . . . , Vt} is a partition of V into t clusters of equal size, t0 ≤ t ≤ T .

• P(2) partitions Cross2 into at most T cells.

• for all K ∈ Cross3, P(K) is (d2, ε(T ))-regular.

• H is (⋅, ε3, r)-regular with respect to all but at most ε3t
3( 1

d2
)3 polyads, i.e., members of P̂(2).
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Next we will present two important applications of hypergraph regularity, of which the graph version

we have proved in the first two lectures.

Application 1: the F -removal lemma.

Theorem 4.4 (F -removal lemma). Let F be a 3-graph on b vertices and α > 0. Then there exists δ =
δ(α) > 0 such that the following holds. If a 3-graph H with n vertices has less than δnb copies of F , then

H can be made F -free by removing less than αn3 edges.

Proof. Given a 3-graph F with vertex set [b]. We start with choosing the following constants:

1

n
≪ 1

m0
≪ {1

r
, ε} ≪ c≪min{ε3, d2} ≤ ε3,

1

t0
≪ d,

1

b
.

We further take α = 2d and δ = c/(2T b). Let H be an n-vertex 3-graph, and we show that either H can be

made F -free by removing αn3 edges, or it has δnb copies of F .

We apply the regularity lemma to H with input parameter t0 and ε3, and with possibly at most

(T ! − 1) vertices removed, and obtain a family of partitions P = {P(1),P(2)}, where P(1) = {V1, V2, . . . , Vt}
and P(2) is a partition of Cross2.

We now proceed the clean step: we remove an edge e from H if

• e ∈ E(H) not supported on any polyad (as t ≥ t0 is large, there are at most T !n2 + (n/t)2n ≤ n3/t0
such edges).

• e ∈ E(H) supported on a polyad P , but H is not regular with respect to P, (so the number of edges

is ≤ ε3t3( 1
d2
)3 ⋅ (d32 +O(ε3)) ⋅ (nt )

3 ⋅ 1 = 2ε3n3 by combining the counting lemma for graphs).

• e ∈ E(H) supported on a polyad P , and H is (d′, ε3, r)-regular with respect to P, but d′ < d (so the

number of edges is ≤ (t3) ⋅ (
1
d2
)3 ⋅ (d32 +O(ε3)) ⋅ (nt )

3 ⋅ d ≤ dn3).

Altogether, as 1/t0, ε3 ≪ d, we removed at most 2dn3 edges of H. Let H ′ be the resulting graph after

deleting these edges of H. Does H ′ contain a copy of F?

• If no, then we are done.

• If yes, then H ′ contains a copy of F , and this copy of F defines a (d, d2, ε3, ε, r)-regular complex

H∗ (by taking the cells that intersect the shadow of F ), and H∗ respects the partition of F . By
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Extension/Counting lemma, we derive that H∗ has ≥ c(n−T !
t )

b ≥ (c/2T b)nb copies of F , and we are

also done.

Application 2: Bounded-degree 3-graphs have linear Ramsey number.

(Cooley-Fountoulakis-Kühn-Osthus, Nagle-Olsen-Rödl-Schacht)

Similar to the proof of the graph case, we need to define the reduced 3-graph. However, this definition is

indeed not unique and quite depends on the context (the problem). For our Ramsey-type problem, we use

the following definition.

Definition 4.5 (Fruitful). A triple of clusters V1, V2, V3 is fruitful if G is (ε3, r)-regular with respect to

all but ≤ √ε3-fraction of all polyads P̂(2) induced on V1, V2, V3. Define R to be the reduced 3-graph with

vertices {V1, . . . , Vt} and edges as the fruitful triples.

Lemma 4.6. All but ≤ 2√ε3a31 of the triples of clusters are fruitful.

To complete the proof of Ramsey number problem, we use the following two lemmas with j = 3.
Lemma 4.7 (Embedding lemma for hypergraphs). Let ∆, ℓ, r, n0 be positive integers with 3 ≤ ℓ and let

c, d, d2, ε, ε3 be positive constants such that 1/d,1/d2 ∈ N,1/n0 ≪ 1/r, ε ≪ min{ε3, d} ≤ ε3 ≪ d2,1/∆,1/ℓ
and c ≪ d, d2,1/∆,1/ℓ. Then the following holds for all integers n ≥ n0. Suppose that H is an ℓ-partite

3-uniform hypergraph of maximum degree at most ∆ with vertex classes X1, . . . ,Xℓ such that ∣Xi∣ ≤ cn for

all i = 1, . . . , ℓ. Suppose that for each i = 2,3, Gi is an ℓ-partite i-uniform hypergraph with vertex classes

V1, . . . , Vℓ, which all have size n. Suppose also that G3 is (d2, ε3, r)-regular with respect to G2, that G2 is

(d2, ε)-regular, and that (G3,G2) respects the partition of H. Then G3 contains a copy of H.

Lemma 4.8 (Slicing lemma). Let j ≥ 2 and s0, r ≥ 1 be integers and let δ0, d0 and p0 be positive real

numbers. Then there is an integer n0 = n0(j, s0, r, δ0, d0, p0) such that the following holds. Let n ≥ n0 and

let Gj be a j-partite j-uniform hypergraph with vertex classes V1, . . . , Vj which all have size n. Also let Gj−1
be a j-partite (j−1)-uniform hypergraph with the same vertex classes and assume that each j-set of vertices

that spans a hyperedge in Gj also spans a K
(j−1)
j−1 in Gj−1. Suppose that

1. ∣Kj(Gj)∣ > nj/ lnn and

2. Gj is (d, δ, r)-regular with respect to Gj−1, where d ≥ d0 ≥ 2δ ≥ 2δ0.

Then for any positive integer s ≤ s0 and all positive reals p1, . . . , ps ≥ 0 with ∑s
i=1 pi ≤ 1 there exists a

partition of E(Gj) into s + 1 parts E(0)(Gj),E(1)(Gj), . . . ,E(s)(Gj) such that if Gj(i) denotes the spanning

subhypergraph of Gj whose edge set is E(i)(Gj), then Gj(i) is (pid,3δ, r)-regular with respect to Gj−1 for

every i = 1, . . . , s. Moreover, Gj(0) is ((1 −∑s
i=1 pi)d,3δ, r)-regular with respect to Gj−1 and E(0)(Gj) = ∅ if

∑s
i=1 pi = 1.

3



The hypergraph Ramsey number R(H) of a k-grpah H is the smallest n ∈ N such that for every 2-

colouring of the hyperedges of the complete k-graph on n vertices one can find a monochromatic copy of

H. The maximum degree of H is the maximum number of hyperedges containing any vertex in H.

Theorem 4.9. For all ∆, there exists a constant C = C(∆) such that all 3-graphs H of maximum degree

at most ∆ satisfy R(H) ≤ C ∣H∣.

Proof. Given ∆, choose large constant C. Consider complete 3-graph K
(3)
m , m = C ∣H ∣. Given a red/blue

coloring of E(K(3)m ). Let Gred be the red subgraph and assume that e(Gred) ≥ 1
2
(m
3
). Apply Regularity

lemma to Gred with ε3 ≪ 1
∆ , obtaining a family of partitions P = {P(1),P(2)}, where P(1) = {V1, . . . , Vt}

and t is large (e.g., t ≥ ℓ ∶= R(K(3)3∆ )).
Let R be the reduced hypergraph. By Lemma 4.6, we have

e(R) ≥ (1 − o(1))(∣R∣
3
) >
⎛
⎝
1 − 1

(ℓ
3
)
⎞
⎠
(∣R∣
3
).

Now we claim thatR contains a copy ofK
(3)
ℓ . Assume for the sake of contradiction thatR isK

(3)
ℓ -free. Then

for each ℓ-subset S of V (R), we have e(R[S]) ≤ (ℓ3)−1. But note that e(R) = (
∣R∣−3
ℓ−3
)−1∑S⊂V (R),∣S∣=ℓ e(R[S]).

Thus, we have e(R) ≤ (∣R∣−3ℓ−3
)−1(∣R∣

ℓ
) ((ℓ

3
) − 1) . Observe that (∣R∣−3ℓ−3

)−1(∣R∣
ℓ
)(ℓ

3
) = (∣R∣3 ), which yields the desired

contradiction. Without loss of generality, assume it’s on V1, . . . , Vℓ. Choose a (2, ℓ)-complex S on V1, . . . , Vℓ

such that S is a union of cells of P(2) and Gred is regular with respect to S. For each i, j ∈ [ℓ], choose a

cell on Vi × Vj uniformly at random ( 1
d2

choices).

Fix Vi, Vj , Vk with i, j, k ∈ [ℓ], as ViVjVk ∈ E(R), it is fruitful, Gred is (ε3, r)-regular with respect to

≥ (1−√ε3) ( 1
d2
)
3
of the polyads on Vi, Vj , Vk. As we choose each cell uniformly at random, the probability

that Gred is regular with respect to S[Vi, Vj , Vk] is ≥ 1 − √ε3, and Gred is regular with respect to S is

≥ 1 − √ε3(ℓ3) >
1
2 as ε ≪ 1

ℓ . Now color hyperedge ViVjVk red if d(Gred/S[Vi, Vj , Vk]) ≥ 1
2 , and color blue

otherwise. Since ℓ = R(K(3)3∆ ), we find a monochromatic copy K of K
(3)
3∆ in K

(3)
ℓ . Fix a (3∆)-vertex-coloring

of H such that for each edge of H, all vertices get distinct colors (exists by greedy coloring). First suppose

it is red, we want to embed H as a (3,3∆)-graph to K. By assumption, Gred is (⋅, ε3, r)-regular with

respect to each polyad of K, and it is partition-respecting with respect to H as it is complete.

The only issue is that the densities are different, which can be dealt with by a simple probabilistic

argument (by Slicing lemma). By the embedding lemma, find a copy of H in Gred. On the other hand,

if K is blue, we need to prove that Gblue is regular with respect to all chosen polyads S. So suppose Q =
(Q(1), . . . ,Q(r)) is an r-tuple of subhypergraphs of one of these polyads S, satisfying ∣K3(Q)∣ > ε3∣K3(S)∣.
Let ds be such that Gred is (ds, ε3, r)-regular with respect to S. Then

∣(1 − ds) − d(Gblue ∣ Q)∣ = ∣ds − (1 − d(Gblue ∣ Q))∣ = ∣ds − d(Gred ∣ Q)∣ < ε3.
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Thus Gblue is (1 − ds, ε3, r)-regular with respect to S (note that ε3 < 1
2 < 1 − ds). Following the same

argument as in the previous case, we add E(G′blue)∩K3(S) to the subcomplex of S induced by the clusters

in K to derive the regular (3,3∆)-complex Sblue to which we can apply the embedding theorem to obtain

a copy of H in Gblue.

It remains to check that we can choose C to be a constant depending only on ∆. Note that the

constants and functions d′, ε3, r, and θ we defined at the beginning of the proof all depend only on ∆. So

this is also true for the integers n0 and t. Note that in order to apply the regularity lemma to Gred, we

need m ≥ n0, where m = C ∣H ∣. This is certainly true if we set C ≥ n0. The embedding theorem allows us

to embed subcomplexes of size at most cn, where n is the cluster size and where c satisfies c≪ 1
a1
, ε3,

1
(3∆) .

Thus c too depends only on ∆. In order to apply the embedding theorem, we need that n ≥ n0, where n0

as defined in the embedding theorem depends only on ∆ and k. Since the number of clusters is at most

t, this is satisfied if m ≥ tn0, which in turn is certainly true if C ≥ tn0. When we applied the embedding

lemma to H, we needed that ∣H ∣ ≤ cn. Since

n = m

a1
= C ∣H ∣

a1
≥ C ∣H ∣

t
,

it suffices to choose C ≥ t
c for this. Altogether, this shows that we can define the constant C in Theorem 4.9

by

C ∶=max{tn0, t/c}.
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