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Lecture 4 The hypergraph regularity lemma and its applications

Before giving the regularity lemma of Rodl and Schacht, we introduce some notations. Let V' be the vertex

set and P(M) = (V1,...,V;) be a partition of V, where V; is cluster for i € [¢].

Definition 4.1. For all j € [3], let Cross; = Cmssj(P(l)) denote the set of all crossing j-subsets of V. For
all A c [t], let Crossa denote all crossing subsets of V' that meet V; if and only if i € A.

Suppose that Py is a partition of Crossa, where the parts are called cells and P(?) is the union of all
P4 with |A| = 2 (so P?) partitions Cross).
Definition 4.2. Given P = {PM, PP ¢ family of partitions on V, and K = vvjvg with v; € Vi, vj € Vj,
vy € Vi, the polyad (or triad) P(K) is a (2,3)-graph (i.e., 3-partite 2-graph) on V; u'V; u'Vy, with edge set
C(vi,vj) U C(vs,v;) U C(vj,v;) where C(v;,v5) is the cell in Py that contains viv;.

We say that P(K) is called (d2,0)-regular if all C(v;,v;),C(vi,vx), C(vj,vg) are (dg,d)-regular with
respect to their underlying sets. Let P(?) be the family of all P(K ) for K € Crosss.

Lemma 4.3 (Regularity lemma, R6dl-Schacht, similar to Frankl-Ro6dl). For alles > 0, tg € N and functions
r:N— N ande:N - (0,1], there exists dy > 0 such that % e N and T,ng € N such that % <T and n > ng
and TYn, and the following holds. Let H be a 3-graph of order n. Then there exists P = {73(1),77(2)} of V
such that

o P = {V1,... . Vi) is a partition of V into t clusters of equal size, tg <t <T.
o P partitions Crossy into at most T cells.
o for all K € Crosss, P(K) is (d2,e(T))-regular.

o H is (-, e3,r)-reqular with respect to all but at most 535’(%)3 polyads, i.e., members of P3).



Next we will present two important applications of hypergraph regularity, of which the graph version

we have proved in the first two lectures.

Application 1: the F-removal lemma.

Theorem 4.4 (F-removal lemma). Let F' be a 3-graph on b vertices and « > 0. Then there ezists 6 =
5(c) > 0 such that the following holds. If a 3-graph H with n vertices has less than dn® copies of F, then
H can be made F-free by removing less than an® edges.

Proof. Given a 3-graph F' with vertex set [b]. We start with choosing the following constants:
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We further take o = 2d and 6 = ¢/(27°). Let H be an n-vertex 3-graph, and we show that either H can be
made F-free by removing an® edges, or it has én® copies of F.

We apply the regularity lemma to H with input parameter ¢y and e3, and with possibly at most
(T!-1) vertices removed, and obtain a family of partitions P = {P(1), PP} where PM) = {V},V5,...,V;}
and P? is a partition of Crosss.

We now proceed the clean step: we remove an edge e from H if

e c ¢ E(H) not supported on any polyad (as t > tq is large, there are at most T'n? + (n/t)*n < n3/tg

such edges).

e ¢ E(H) supported on a polyad P, but H is not regular with respect to P, (so the number of edges

is < €3t3(é)3 (d3+0(e3)) - (%)3 -1 =2e3n3 by combining the counting lemma for graphs).

e c e F(H) supported on a polyad P, and H is (d’,es,r)-regular with respect to P, but d’ < d (so the
number of edges is < (;) . (%)3 (d3+O0(e3)) - (2)*-d < dn?).

Altogether, as 1/tg,e3 < d, we removed at most 2dn> edges of H. Let H' be the resulting graph after
deleting these edges of H. Does H' contain a copy of F'?
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e If no, then we are done.

o If yes, then H' contains a copy of F, and this copy of F defines a (d,ds,e3,¢,r)-regular complex
H* (by taking the cells that intersect the shadow of F'), and H* respects the partition of F. By



Extension/Counting lemma, we derive that H* has > c("_TT!)b > (¢/2T°)nb copies of F, and we are

also done. O

Application 2: Bounded-degree 3-graphs have linear Ramsey number.
(Cooley-Fountoulakis-Kiihn-Osthus, Nagle-Olsen-Rédl-Schacht)

Similar to the proof of the graph case, we need to define the reduced 3-graph. However, this definition is
indeed not unique and quite depends on the context (the problem). For our Ramsey-type problem, we use

the following definition.

Definition 4.5 (Fruitful). A triple of clusters Vi, Va, Vs is fruitful if G is (e3,1)-regular with respect to
all but < \/e3-fraction of all polyads PP induced on Vi, Va, V. Define R to be the reduced 3-graph with
vertices {Vi,...,Vi} and edges as the fruitful triples.

Lemma 4.6. All but < 2\/5651)’ of the triples of clusters are fruitful.

To complete the proof of Ramsey number problem, we use the following two lemmas with j = 3.
Lemma 4.7 (Embedding lemma for hypergraphs). Let A, ¢, r,ng be positive integers with 3 < ¢ and let
¢,d,da,e,e3 be positive constants such that 1/d,1/dy € N,1/ng < 1/r,e < min{es,d} < e3 < da,1/A,1/¢
and ¢ < d,do,1/A,1/L. Then the following holds for all integers n > ng. Suppose that H is an (-partite
3-uniform hypergraph of mazimum degree at most A with vertex classes Xi,..., Xy such that | X;| < cn for
all i =1,...,0. Suppose that for each © = 2,3, G; is an £-partite i-uniform hypergraph with vertex classes
Vi,..., Vi, which all have size n. Suppose also that Gs is (de,es3,r)-reqular with respect to Ga, that Gy is
(da,e)-reqular, and that (Gs,Ga) respects the partition of H. Then Gs contains a copy of H.

Lemma 4.8 (Slicing lemma). Let j > 2 and so,r > 1 be integers and let dy,dy and py be positive real
numbers. Then there is an integer ng = no(J, so, 7, d0,do, o) such that the following holds. Let n > ngy and
let G; be a j-partite j-uniform hypergraph with vertex classes Vi, ..., V; which all have size n. Also let G;_1
be a j-partite (j—1)-uniform hypergraph with the same vertex classes and assume that each j-set of vertices

that spans a hyperedge in G; also spans a K;{Il) in Gj_1. Suppose that
1. |K;(G;)| >n?/Inn and
2. G is (d,6,r)-reqular with respect to Gj_1, where d > dy > 28 > 26y.

Then for any positive integer s < so and all positive reals pi,...,ps > 0 with Y7 1p; < 1 there exists a
partition of E(G;) into s+ 1 parts E((G;), EM(G,)),...,E®)(G;) such that if G;j(i) denotes the spanning
subhypergraph of G; whose edge set is E(i)(gj), then G;j(i) is (pid,30,r)-reqular with respect to Gj_1 for
everyi=1,...,s. Moreover, G;(0) is (1 - X5 pi)d, 33,r)-reqular with respect to G;—1 and E°)(G;) = @ if
Yia1pi =1



The hypergraph Ramsey number R(H) of a k-grpah H is the smallest n € N such that for every 2-
colouring of the hyperedges of the complete k-graph on n vertices one can find a monochromatic copy of

‘H. The mazimum degree of H is the maximum number of hyperedges containing any vertex in H.

Theorem 4.9. For all A, there exists a constant C' = C(A) such that all 3-graphs H of mazimum degree
at most A satisfy R(H) < C|H|.

Proof. Given A, choose large constant C. Consider complete 3-graph K,(s ), m = C|H|. Given a red/blue
coloring of E(K,(s )). Let Gyeq be the red subgraph and assume that e(Gieq) > %("31) Apply Regularity
lemma to Greq with £3 < %, obtaining a family of partitions P = {PM) PP where PM = {V7,...,V;}
and t is large (e.g., t > £ := R(Kéz) )

Let R be the reduced hypergraph. By Lemma 4.6, we have
\R\) 1 (]R|)
R)>(1-0(1 1-—< .
e(R) > (1-o(D)('y ) > o)

Now we claim that R contains a copy of K 53). Assume for the sake of contradiction that R is K f')—free. Then

for each ¢-subset S of V(R), we have e(R[S]) < (g)—l. But note that e(R) = (lR‘_3)71 Yscv(r),|s=¢ e(R[S]).
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Thus, we have e(R) < ('ﬂ?) (u;') ((g) - 1) . Observe that ('I;S?’) ('?‘)(g) = (‘?'), which yields the desired
contradiction. Without loss of generality, assume it’s on Vi, ..., V. Choose a (2,¢)-complex S on Vi,...,V}

such that S is a union of cells of P? and Gyeq is regular with respect to S. For each i, 7 € [¢], choose a
cell on V; x V; uniformly at random (% choices).

Fix V;, V}, Vi, with 4,4,k € [£], as V;V;Vi, € E(R), it is fruitful, Gyeq is (€3,7)-regular with respect to
> (1-./23) (%)3 of the polyads on V;,V;, V4. As we choose each cell uniformly at random, the probability
that Gyeq is regular with respect to S[V;, V}, V] is > 1 - /€3, and Gieq is regular with respect to S is
>1- \/5(5) > % as € < %. Now color hyperedge V;V;Vj red if d(Grea/S[Vi, Vj, Vi]) > %, and color blue
otherwise. Since ¢ = R(K éi)), we find a monochromatic copy K of K éi) in K 53). Fix a (3A)-vertex-coloring
of H such that for each edge of H, all vertices get distinct colors (exists by greedy coloring). First suppose
it is red, we want to embed H as a (3,3A)-graph to K. By assumption, Gpeq is (-, e3,7)-regular with
respect to each polyad of K, and it is partition-respecting with respect to H as it is complete.

The only issue is that the densities are different, which can be dealt with by a simple probabilistic
argument (by Slicing lemma). By the embedding lemma, find a copy of H in Gyeq. On the other hand,
if K is blue, we need to prove that Gy is regular with respect to all chosen polyads S. So suppose Q) =
(QW,...,QM) is an r-tuple of subhypergraphs of one of these polyads S, satisfying [K3(Q)| > e3|K3(S)|.

Let ds be such that Gyeq is (ds,e3,7)-regular with respect to S. Then

|(1 - dS) _d(Gblue | Q)l = |ds - (1 _d(Gblue | Q))’ = |ds _d(Gred ‘ Q)| <é&s.



Thus Gpye is (1 — ds,e3,7)-regular with respect to S (note that e3 < % < 1-ds). Following the same
argument as in the previous case, we add E(GY,,,.) N K3(S) to the subcomplex of S induced by the clusters
in K to derive the regular (3,3A)-complex Spiye to which we can apply the embedding theorem to obtain
a copy of H in Gpjye.

It remains to check that we can choose C' to be a constant depending only on A. Note that the
constants and functions d’, €3, r, and 6 we defined at the beginning of the proof all depend only on A. So
this is also true for the integers ng and ¢t. Note that in order to apply the regularity lemma to Gieq, We
need m > ng, where m = C|H|. This is certainly true if we set C' > ng. The embedding theorem allows us
to embed subcomplexes of size at most cn, where n is the cluster size and where c satisfies ¢ « i, €3, ﬁ.
Thus ¢ too depends only on A. In order to apply the embedding theorem, we need that n > ng, where ng
as defined in the embedding theorem depends only on A and k. Since the number of clusters is at most

t, this is satisfied if m > tng, which in turn is certainly true if C' > tng. When we applied the embedding

lemma to H, we needed that |H| < ¢n. Since

_m _CH ClH
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it suffices to choose C' > % for this. Altogether, this shows that we can define the constant C' in Theorem 4.9
by
C':= max{tng,t/c}. O
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