2025 BUPT Summer School - Course III Regularity Methods and its Applications

Lecturer: Jie Han Notes prepared by Huan Xu

Lecture 3 The hypergraph regularity

Definition 3.1 (Weak hypergraph regularity). Let H be a 3-graph, and $A, B, C \subseteq V(H)$ be mutually disjoint non-empty vertex set. Then the triple (A, B, C) is called (ε, d) -regular if $|X| \ge \varepsilon |A|, |Y| \ge \varepsilon |B|, |Z| \ge \varepsilon |C|$ for all $X \subseteq A, Y \subseteq B, Z \subseteq C$ and $d_H(X, Y, Z) = (1 \pm \varepsilon)d$ (that is, $|e_H(X, Y, Z)| = (1 \pm \varepsilon)d|X||Y||Z|$).

Example 3.2. Let V_1, V_2, V_3, V_4 be vertex sets of size n such that (V_i, V_{i+1}, V_{i+2}) is (ε, d_i) -regular for i = 1, 2. Let $P = (v_1, v_2, v_3, v_4)$ be the 3-graph with edges $v_1v_2v_3$ and $v_2v_3v_4$. Then the number of $P = (v_1, v_2, v_3, v_4)$ with $v_i \in V_i$ is not necessarily $(1 \pm o(1))d_1d_2n^4$.

A k-graph F is linear if $|e \cap e'| \le 1$ for all $e, e' \in E(F)$.

Remark 3.3.

• Kohayakawa, Nagle, Rödl, Schacht proved the following result:

Weak regularity \iff Counting linear k-graphs F.

Hypergraph regularity

Let (i, j)-graph denote the j-partite i-graph.

- Regular complexes: Let $\mathcal{P} = (V_1, V_2, ..., V_s)$ be a partition of V. A set $S \subseteq V$ is \mathcal{P} -partite if $|S \cap V_i| \le 1$ for all i = 1, ..., s. A hypergraph is \mathcal{P} -partite if all of its edges are \mathcal{P} -partite. It is S-partite if it is \mathcal{P} -partite for some $|\mathcal{P}| = S$.
- Complex: The complex is a hypergraph H such that if $e \in E(H)$ and $e' \subset e$ with $e' \neq \emptyset$, then $e' \in E(H)$. A 3-complex is a hypergraph H such that if $e \in E(H)$ with $|e| \leq 3$ and $e' \subset e$ with $e' \neq \emptyset$, then $e' \in E(H)$. Let H be a \mathcal{P} -partite 3-complex. For $i \leq 3, X \in \binom{\mathcal{P}}{i}$, we write H_X for the subgraph of

 H_i induced by $\cup X$. For example, if $X = \{V_1, V_2, V_3\}$, then $H_X = H_{\{V_1, V_2, V_3\}} = H_3[V_1 \cup V_2 \cup V_3]$. Next we use $H_{X<}$ to denote H_X downward closure but then remove H_X . Then $H_{X<}$ is a (i-1,i)-complex. For example, if $X = \{V_1, V_2, V_3\}$ and H_X is a (3,3)-graph, then $H_{X<}$ is a (2,3)-complex. In fact, if $e \in H_X$, then $e' \in H_{X<}$ for all $e' \nsubseteq e$ and $e' \neq \emptyset$.

• Relative density: the number of 3-edges in H_X the number of triangles in $H_{X<}$.

Let H_i be an (i,i)-graph and H_{i-1} be an (i-1,i)-graph on the same partition \mathcal{P} . Let $K_i(H_{i-1})$ be a family of \mathcal{P} -partite i-sets forming a copy of complete (i-1)-graph in H_{i-1} . Then the density of H_i with respect to H_{i-1} is as follows:

$$d(H_i|H_{i-1}) = \begin{cases} \frac{|K_i(H_{i-1}) \cap E(H_i)|}{|K_i(H_{i-1})|} & \text{if } |K_i(H_{i-1})| > 0, \\ 0 & \text{otherwise }. \end{cases}$$

For example, for partition $\mathcal{P} = (V_1, V_2, V_3)$, if H_2 is a (2,3)-graph and H_3 is a (3,3)-graph, then

$$d(H_3|H_2) = \frac{|K_3(H_2) \cap E(H_3)|}{|K_3(H_2)|} = \frac{\text{triangle } \cap \text{ 3-edges}}{\text{the number of triangles}}.$$

More generally, if $\overrightarrow{Q} = (Q_1, \dots, Q_r)$ is a collection of r subhypergraphs of H_{i-1} , then we define $K_i(\overrightarrow{Q}) = \bigcup_{j=1}^r K_i(Q_j)$ and

$$d(H_i|\overrightarrow{Q}) = \begin{cases} \frac{|K_i(\overrightarrow{Q}) \cap E(H_i)|}{|K_i(\overrightarrow{Q})|} & \text{if } |K_i(\overrightarrow{Q})| > 0, \\ 0 & \text{otherwise }. \end{cases}$$

Definition 3.4. An (i,i)-graph H_i is (d_i,ε,r) -regular with respect to H_{i-1} if for all r-tuples \overrightarrow{Q} with $|K_i(\overrightarrow{Q})| > \varepsilon |K_i(H_{i-1})|$, we have $d(H_i|\overrightarrow{Q}) = d_i \pm \varepsilon$.

Definition 3.5 (Complex regular). Given $s \ge 2$ and a (2,s)-complex H with a partition \mathcal{P} , we say that H is (d_2,ε,r) -regular if for all $A \in \binom{\mathcal{P}}{2}$, H_A is (d_2,ε) -regular with respect to $(H_{A<})$.

Given $s \ge 3$ and a (3,s)-complex H with a partition \mathcal{P} , we say that H is $(d,d_2,\varepsilon_3,\varepsilon,r)$ -regular if

- for all $A \in \binom{\mathcal{P}}{2}$, H_A is (d_2, ε) -regular with respect to $(H_{A<})$ or $d(H_A|H_{A<}) = 0$,
- for all $A \in \binom{\mathcal{P}}{3}$, H_A is (d, ε_3, r) -regular with respect to $(H_{A<})_2$ or $d(H_A|(H_{A<})_2) = 0$.

Lemma 3.6 (Restriction). Let $s, r, m \in \mathbb{N}$, $\alpha, d_2, d, \varepsilon, \varepsilon_3 > 0$ such that $\frac{1}{m} \ll \frac{1}{r}$, $\varepsilon \leq \min\{\varepsilon, d_2\} \leq \varepsilon_3 \ll \alpha \ll d, \frac{1}{s}$. Let H be a $(d, d_2, \varepsilon_3, \varepsilon, r)$ -regular (3, s)-complex with vertex classes V_1, \ldots, V_s of size m. For each i, let $V_i' \subseteq V_i$ be a set of size at least αm . Then the restriction $H' = H[V_1' \cup \cdots \cup V_s']$ is $(d, d_2, \sqrt{\varepsilon_3}, \sqrt{\varepsilon}, r)$ -regular.

For the following two definitions, suppose that G is a $(3, \ell)$ -complex with parts (V_1, \ldots, V_ℓ) and H is a $(3, \ell)$ -complex with parts (X_1, \ldots, X_ℓ) .

Definition 3.7. We say that G respects the partition of H if whenever H contains an i-edge with vertices in X_{j_1}, \ldots, X_{j_i} , then there is an i-edge of G with vertices in V_{j_1}, \ldots, V_{j_i} .

Definition 3.8. A labeled copy of H in G is partition-respecting if for all $i \in [\ell]$, the vertices corresponding to those in X_i lie within V_i .

In general, we denote the number of labeled partition-respecting copies of H in G by $|H|_G$.

Lemma 3.9 (Extension lemma). Let r, b, b', m_0 be integers, b' < b, and let $\frac{1}{m_0} \ll \{\frac{1}{r}, \delta\} \ll c \ll \min\{\delta_3, d_2\} \le \delta_3 \ll \theta, \frac{1}{r}, d, \frac{1}{b}, \frac{1}{d_2} \in \mathbb{N}$. The following holds for $m \ge m_0$: Suppose that G is a $(3, \ell)$ -complex on b vertices with classes X_1, \ldots, X_ℓ , and let G' be an induced subcomplex of G on b' vertices. Suppose H^* is a $(d, d_2, \delta_3, \delta, r)$ -regular $(3, \ell)$ -complex with vertex classes V_1, \ldots, V_ℓ , each of order m, which respects the partition of G. Then all but at most $\theta |G'|_{H^*}$ labeled partition-respecting copies of G' in H^* can extend to at least $cm^{b-b'}$ labeled partition-respecting copies of G in H^* .

Remark 3.10 (Counting).

- If b' = 0, one has counting: H^* contains $(1 \pm \varepsilon)d^{e(G_3)}d_2^{e(G_2)}n^b$ labeled partition-respecting copies of G.
- Question (Counting): count the number of labeled partition-respecting copies of K_3 .
- Question (rooted counting): count the number of labeled partition-respecting copies of K_3 containing the root v.

Before giving the regularity lemma of Rödl and Schacht, we introduce some notations. Let V be the vertex set and $\mathcal{P}^{(1)} = (V_1, \dots, V_t)$ be a partition of V, where V_i is cluster for $i \in [t]$. For all $j \in [3]$, let $\text{Cross}_j = \text{Cross}_j(P^{(1)})$ denote the set of all crossing j-subsets of V. For all $A \subseteq [t]$, let Cross_A denote all crossing subsets of V that meet V_i if and only if $i \in A$. Suppose that \mathcal{P}_A is a partition of Cross_A , where the parts are called cells and $\mathcal{P}^{(2)}$ is the union of all \mathcal{P}_A with |A| = 2 (so $\mathcal{P}^{(2)}$ partitions Cross_2). Let $\mathcal{P} = \{P^{(1)}, P^{(2)}\}$ be a family of partitions on V. Given $\mathcal{P} = \{P^{(1)}, P^{(2)}\}$ and $K = v_i v_j v_k$ with $v_i \in V_i$, $v_j \in V_j$, $v_k \in V_k$, the polyad (or triad) $\mathcal{P}(K)$ is a (2,3)-graph (i.e.,3-partite 2-graph) on $V_i \cup V_j \cup V_k$ with edge set $C(v_i, v_j) \cup C(v_i, v_k) \cup C(v_j, v_k)$ where $C(v_i, v_j)$ is the cell in \mathcal{P}_{ij} that contains $v_i v_j$. $\mathcal{P}(K)$ is called (d_2, δ) -regular if all $C(v_i, v_j)$, $C(v_i, v_k)$, $C(v_j, v_k)$ are (d_2, δ) -regular with respect to their underlying sets. Let $\hat{\mathcal{P}}^{(2)}$ be the family of all $\mathcal{P}(K)$ for $K \in \text{Cross}_3$.

Lemma 3.11 (Regularity lemma-Rödl, Schacht, similar to Frankl-Rödl). For all $\varepsilon_3 > 0$, $t_0 \in \mathbb{N}$ and functions $\gamma : \mathbb{N} \to \mathbb{N}$ and $\xi : \mathbb{N} \to (0,1]$, there exists $d_2 > 0$ such that $\frac{1}{d_2} \in \mathbb{N}$ and $T, n_0 \in \mathbb{N}$ such that $\frac{1}{d_2} \leq T$ and $n \geq n_0$ and T!|n, and the following holds. Let T be a 3-graph of order T. Then there exists T = $\{T^{(1)}, T^{(2)}\}$ of T such that

- $\mathcal{P}^{(1)} = \{V_1, \dots, V_t\}$ is a partition of V into t clusters of equal size, $t_0 \le t \le T$.
- $\mathcal{P}^{(2)}$ partitions Cross₂ into at most T cells.
- for all $K \in Cross_3$, $\mathcal{P}(K)$ is $(d_2, \varepsilon(T))$ -regular.
- H is (\cdot, ε_3) -regular with respect to all but at most $\varepsilon_3 t^3 (\frac{1}{d_2})^3$ polyads, i.e., members of $\hat{\mathcal{P}}^{(2)}$.

Theorem 3.12 (F-removal lemma). Let F be a 3-graph on b vertices. If a 3-graph H with n vertices has $o(n^b)$ copies of F, then H can be made F-free by removing at most $o(n^3)$ edges.

Proof.

- Firstly, we choose the desired constants.
- Then apply regularity lemma to H possibly at most (T!-1) vertices.
- Define $\mathcal{P}^{(1)}$ and $\mathcal{P}^{(2)}$ as follows: $\mathcal{P}^{(1)}$:

 $\mathcal{P}^{(2)}$: a partition of Cross₂.

- $e \in E(H)$ not supported on any polyad is deleted (so the number of edges is $o(n^3)$).
- $e \in E(H)$ not supported on a polyad P, but H is not regular with respect to \mathcal{P} , is deleted (so the number of edges is $o(n^3)$).
- Let H' be the obtained graph after deleting $o(n^3)$ edges of H. Does H' contain a copy of F?
 - If No, done!

– If yes, there exists $F \subseteq H'$, then one can apply Counting lemma and get at least $o(n^b)$ copies of F in $H' \subseteq H$, a contradiction.