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Lecture 2 The regularity method and the blowup lemma

In Lecture 1 we use an embedding scheme for proving the K3-counting lemma. If we do the embedding

a bit more carefully, then we can embed a subgraph of small linear size.

Lemma 2.1 (Graph embedding lemma). For any !, n,m ∈ N, let ω < (d⌐ω)!!+2 and m ≤ ωn. Suppose that G

is a graph satisfying v(G) = V1 ⌐ ⋅ ⋅ ⋅ ⌐ Vr with ⌜Vi⌜ ≥ n for i ∈ [r] and (Vi, Vj) is (ω, d′)-regular, where d
′ ≥ d

and i ≠ j ∈ [r]. Let H be an h-vertex r-partite graph with partition X1 ⌐ ⋅ ⋅ ⋅ ⌐Xr with maximum degree !

and ⌜Xi⌜ ≤m for i ∈ [r]. Then H ⊆ G.

Proof. Let v(H) = {x1, . . . , xh}, and let ε(i) ∈ [r] such that xi ∈ Xε(i). We will construct an embedding f

by defining V1 = f(x1), V2 = f(x2), . . . , vh = f(xh). Denote Ci(j) to be the set of possible candidates of vj

after we determine v1, v2, . . . , vi⌐1.
Now we embed Xi to Vi. Initially, Ci(j) = Vε(j). Suppose that we have determined v1, v2, . . . , vi⌐1

and we have ⌜Ci(j)⌜ ≥ (! + 1)ωn for all j ≥ i. Then we need to select vi from Ci(i). Consider A = {xj ∈
NH(xi) ⋊ j > i} = {xs1 , . . . , xsp}, p ≤ !. Since (Vε(i), Vε(sω)) is (ω, d′)-regular for ϑ ∈ [p], all but at most

ωn vertices in Ci(i) have at least (d − ω)⌜Ci(sϑ)⌜ neighbors in Ci(sϑ) for ϑ ∈ [p]. Thus, there exist at least

⌜Ci(i)⌜−!ωn vertices in Ci(i) have at least (d− ω)⌜Ci(Sϑ)⌜ neighbors in Ci(sϑ) for ϑ ∈ [p]. Among them, at

most m−1 ≤ ωn−1 vertices are in {v1, v2, . . . , vi⌐1}. Then we can choose one vertex as vi ∉ {v1, v2, . . . , vi⌐1}
that has at least (d − ω)⌜Ci(Sϑ)⌜ neighbors in Ci(sϑ) for ϑ ∈ [p].

Let vi = f(xi). Next, we will make the following update. Let

Ci+1(j) =
⌜⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝

Ci(j) ⋉NG(vi) if xj ∼ xi,
Ci(j) if xj ⊋ xi.

Since xj has at most ! neighbors, ⌜Ci+1(j)⌜ ≥ n(d− ω)! ≥ (!+ 1)ωn throughout the process. Thus, we can

always choose vi for i ≤ h. Then we obtain an embedding of H ⊆ G satisfying the partition.

1



Application: Ramsey Theory

Given a graph H, let r(H) = minn such that for all edge-coloring of Kn contains a monochromatic copy

of H.

Theorem 2.2 (Chvátal - Rödl - Szemerédi - Trotter). Fix ! and let H be a graph with !(H) ≤!. Then

there exists c = c(!) such that r(H) ≤ c⌜H ⌜.
Proof. Let k = r(K!+1). Take ω = 1

2!+1k , t = ! + 1. Assume that N = N(ω, t), T = T (ω, t) as defined in

regularity lemma. Let c = c(!) = max{3T ⌝ω,N}. Take n > c⌜H ⌜ = 3T ⌜H ⌜⌝ω. Next, we need to show that

every 2-edge-coloring of E(Kn) contains a monochromatic copy of H.

Let G be the red graph. Applying the regularity lemma to G with ω, t, we can obtain an ω-regular

partition V0 ⌐ V1 ⌐ ⋅ ⋅ ⋅ ⌐ Vr for G with ⌜Vi⌜ ≥ (1 − ω)nr ≥ 2⌜H ⌜
ω

for i ∈ [r], t ≤ r ≤ T . Consider a graph R on [r]
such that ij ∈ E(R) if and only if (Vi, Vj) is ω-regular. Then

⌜E(R)⌜ ≥ ⌝r
2
⌞ − ωr2 ≥ (1 − 3ω)⌝r

2
⌞ > (1 − 1

k − 1)⌝
r

2
⌞.

By Turán’s theorem, R contains a copy of Kk.

Now color the edges of Kk in the following way: color ij red if d(Vi, Vj) has red density ≥ 1
2 , and

color blue otherwise. (Note that all pairs are ω-regular.) By the definition of k = r(K!+1), there exists

a monochromatic copy of K!+1 in this Kk. Then, V1, V2, . . . , V!+1 are red(or blue) regular (! + 1)-tuple
and the pair (Vi, Vj) is ω-regular for i, j ∈ [! + 1]. Now we define graph G

′ as the red(or blue) graph

on V1, . . . , V!+1. Then G
′ is a (! + 1)-partite graph on V1, . . . , V!+1 such that (Vi, Vj) is (ω, d)-regular

with d ≥ 1
2 and ⌜H ⌜ ≤ ω⌜Vi⌜⌝2. Apply the Graph embedding lemma to G

′ with d = 1
2 and m = ⌜H ⌜, we can

find a copy of H in G
′, which gives a monochromatic copy of H. Thus, there exists c = c(!) such that

r(H) ≤ c⌜H ⌜.
Question: What about embedding large subgraphs or spanning subgraphs?

Definition 2.3. Let G be a graph. A disjoint pair (A,B) of vertices is (ω, d)-super-regular if it’s ω-regular,
d(A,B) ≥ d and d(a,B) ≥ (d − ω)⌜B⌜, d(b,A) ≥ (d − ω)⌜A⌜ for all a ∈ A, b ∈ B.

Lemma 2.4. Let 2ω ≤ d ≤ 1 and n ≥ 2⌝ω. Let G be a graph. If (A,B) is (ω, d)-super-regular in G with

⌜A⌜ = ⌜B⌜ = n, then G[A,B] contains a perfect matching.

Theorem 2.5 (Blow-up lemma (Komlós-Sárközy-Szemerédi)). Let 0 < 1
n
≪ ω≪ 1

r
, d0,

1
! ≤ 1. Suppose that

H is an n-vertex graph satisfying vertex partition X1 ⌐ ⋯ ⌐Xr with !(H) ≤ !. Let G be a graph with

partition V1 ⌐ ⋯ ⌐ Vr such that ⌜Vi⌜ = ⌜Xi⌜ = n and (Vi, Vj) is (ω, d′)-super-regular for d
′ ≥ d. Then we can

embed H into G such that ε(Xi) = Vi.
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Remark 2.6.

On the proof of the Blow-up lemma:

• The proof of the embedding lemma (greedy embedding) can embed an ω-proportion of vertices.

• A careful randomized embedding (random greedy embedding) can embed an (1 − ω)-proportion of ver-

tices, succeeding with high probability.

• If we run the randomized embedding carefully, we can apply Hall-type result for the remaining vertices

and obtain full embedding (Blow-up lemma).

Exercise 2.7. Suppose ω ≪ d ≤ 1. If (A,B) is (ω, d)-regular in G, then there exist A′ ⊆ A, B′ ⊆ B such

that ⌜A′⌜ ≥ (1 − ω)⌜A⌜, ⌜B′⌜ ≥ (1 − ω)⌜B⌜ and (A′,B′) is (2ω, d)-super-regular in G.

Moving to hypergraph regularity

One of the main motivation of the hypergraph regularity is to understand/derive the hypergraph removal

lemma. Recall that for k ≥ 2, a k-uniform hypergraph H is a pair of (V,E), where V is a vertex set and E

is a family of k-element subsets of V . For the convenience, we usually use k-graph to denote the k-uniform

hypergraph.

Lemma 2.8 (Hypergraph removal lemma). For every r-graph H and ω > 0, there exists ϖ > 0 such that

every n-vertex r-graph with < ϖnv(H) copies of H can be made H-free by removing < ωnr edges.

Next we will give the following result, which is a corollary of the tetrahedron removal lemma.

Corollary 2.9. If G is a 3-graph such that every edge is contained in a unique tetrahedron (i.e., a clique

on four vertices), then e(G) = o(n3).
Now let’s prove Roth’s theorem and Szemerédi’s Theorem for 4-AP, the application of triangle removal

lemma. We write 3-AP for 3-term arithmetic progression. We say that A is 3-AP-free if there are no

x,x + y, x + 2y ∈ A with y ≠ 0.
Theorem 2.10 (Roth’s theorem). Let A ⊆ [N] be 3-AP-free. Then ⌜A⌜ = o(N).
Proof. Embed A ⊆ Z⌝MZ with M = 2N + 1 (to avoid wraparounds). Since A is 3-AP-free in Z, it is

3-AP-free in Z⌝MZ as well.

Now, we construct a tripartite graph G whose parts X, Y , Z are all copies of Z⌝MZ. The edges of

the graph are (since M is odd, we are allowed to divide by 2 in Z⌝MZ):

• (x, y) ∈X ⧖ Y whenever y − x ∈ A;

• (y, z) ∈ Y ⧖Z whenever z − y ∈ A;
• (x, z) ∈X ⧖Z whenever (z − x)⌝2 ∈ A.
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In this graph, (x, y, z) ∈X ⧖ Y ⧖Z is a triangle if and only if

y − x, z − x
2

, z − y ∈ A.

The graph was designed so that the above three numbers form an arithmetic progression in the listed

order. Since A is 3-AP-free, these three numbers must all be equal. So, every edge of G lies in a unique

triangle, formed by setting the three numbers above to be equal.

The graph G has exactly 3M = 6N + 3 vertices and 3M ⌜A⌜ edges. As every edge lies in a unique

triangle, G has exactly 3M ⌜A⌜⌝3 = M ⌜A⌜ = o(M3) triangles, and the triangle removal lemma says that G

can be made triangle-free by removing o(M2) edges. However, as every edge of G is in a unique triangle,

removing any edge destroys at most one triangle. That is, to make G triangle-free, one has to remove at

least M ⌜A⌜ edges. Therefore, we have M ⌜A⌜ = o(M2), yielding ⌜A⌜ = o(M) = o(N) and we are done.

In fact, Roth’s theorem is the first case of a famous result known as Szemerédi’s theorem.

Theorem 2.11 (Szemerédi’s theorem). For every fixed k ≥ 3, every k-AP-free subset of [N] has size o(N).
Proof of Szemerédi’s theorem for 4-AP. Let A ⊆ [N] be 4-AP-free. Let M = 6N + 1. Then A is also

a 4-AP-free subset in Z⌝MZ. Build a 4-partite 3-graph G with parts W , X, Y , Z, all of which are copies

of [M]. Define edges of G as follows, where w,x, y, z range over elements of W , X, Y , Z, respectively:

wxy ∈ E(G) ⇐↢ 3w + 2x + y ∈ A,

wxz ∈ E(G) ⇐↢ 2w + x − z ∈ A,

wyz ∈ E(G) ⇐↢ w − y − 2z ∈ A,

xyz ∈ E(G) ⇐↢ −x − 2y − 3z ∈ A.

What is important here is that the ith expression does not contain the ith variable.

The vertices xyzw form a tetrahedron if and only if

3w + 2x + y, 2w + x − z, w − y − 2z, −x − 2y − 3z ∈ A.
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However, these values form a 4-AP with common di”erence −x − y − z −w. Since A is 4-AP-free, the only

tetrahedra in A are trivial 4-APs (those with common di”erence zero). For each triple (w,x, y) ∈W ⧖X⧖Y ,

there is exactly one z ∈ Z⌝MZ such that x+y+z+w = 0. Thus, every edge of the hypergraph lies in exactly

one tetrahedron.

By Corollary 2.9, the number of edges in the hypergraph is o(M3). On the other hand, the number

of edges is exactly 4M2⌜A⌜ (for example, for every a ∈ A, there are exactly M
2 triples (w,x, y) ∈ (Z⌝MZ)3

with 3w + 2x + y = a). Therefore ⌜A⌜ = o(M) = o(N).
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