2025 BUPT Summer School - Course III Regularity Methods and its Applications

Lecturer: Jie Han Notes prepared by Huan Xu

Lecture 2 The regularity method and the blowup lemma

In Lecture 1 we use an embedding scheme for proving the K_3 -counting lemma. If we do the embedding a bit more carefully, then we can embed a subgraph of small linear size.

Lemma 2.1 (Graph embedding lemma). For any Δ , $n, m \in \mathbb{N}$, let $\varepsilon < \frac{(d-\varepsilon)^{\Delta}}{\Delta+2}$ and $m \le \varepsilon n$. Suppose that G is a graph satisfying $v(G) = V_1 \cup \cdots \cup V_r$ with $|V_i| \ge n$ for $i \in [r]$ and (V_i, V_j) is (ε, d') -regular, where $d' \ge d$ and $i \ne j \in [r]$. Let H be an h-vertex r-partite graph with partition $X_1 \cup \cdots \cup X_r$ with maximum degree Δ and $|X_i| \le m$ for $i \in [r]$. Then $H \subseteq G$.

Proof. Let $v(H) = \{x_1, \ldots, x_h\}$, and let $\phi(i) \in [r]$ such that $x_i \in X_{\phi(i)}$. We will construct an embedding f by defining $V_1 = f(x_1), V_2 = f(x_2), \ldots, v_h = f(x_h)$. Denote $C_i(j)$ to be the set of possible candidates of v_j after we determine $v_1, v_2, \ldots, v_{i-1}$.

Now we embed X_i to V_i . Initially, $C_i(j) = V_{\phi(j)}$. Suppose that we have determined $v_1, v_2, \ldots, v_{i-1}$ and we have $|C_i(j)| \ge (\Delta + 1)\varepsilon n$ for all $j \ge i$. Then we need to select v_i from $C_i(i)$. Consider $A = \{x_j \in N_H(x_i) : j > i\} = \{x_{s_1}, \ldots, x_{s_p}\}, \ p \le \Delta$. Since $(V_{\phi(i)}, V_{\phi(s_\ell)})$ is (ε, d') -regular for $\ell \in [p]$, all but at most εn vertices in $C_i(i)$ have at least $(d - \varepsilon)|C_i(s_\ell)|$ neighbors in $C_i(s_\ell)$ for $\ell \in [p]$. Thus, there exist at least $|C_i(i)| - \Delta \varepsilon n$ vertices in $C_i(i)$ have at least $(d - \varepsilon)|C_i(S_\ell)|$ neighbors in $C_i(s_\ell)$ for $\ell \in [p]$. Among them, at most $m-1 \le \varepsilon n-1$ vertices are in $\{v_1, v_2, \ldots, v_{i-1}\}$. Then we can choose one vertex as $v_i \notin \{v_1, v_2, \ldots, v_{i-1}\}$ that has at least $(d - \varepsilon)|C_i(S_\ell)|$ neighbors in $C_i(s_\ell)$ for $\ell \in [p]$.

Let $v_i = f(x_i)$. Next, we will make the following update. Let

$$C_{i+1}(j) = \begin{cases} C_i(j) \cap N_G(v_i) & \text{if } x_j \sim x_i, \\ \\ C_i(j) & \text{if } x_j \nsim x_i. \end{cases}$$

Since x_j has at most Δ neighbors, $|C_{i+1}(j)| \ge n(d-\varepsilon)^{\Delta} \ge (\Delta+1)\varepsilon n$ throughout the process. Thus, we can always choose v_i for $i \le h$. Then we obtain an embedding of $H \subseteq G$ satisfying the partition.

Application: Ramsey Theory

Given a graph H, let $r(H) = \min n$ such that for all edge-coloring of K_n contains a monochromatic copy of H.

Theorem 2.2 (Chvátal - Rödl - Szemerédi - Trotter). Fix Δ and let H be a graph with $\Delta(H) \leq \Delta$. Then there exists $c = c(\Delta)$ such that $r(H) \leq c|H|$.

Proof. Let $k = r(K_{\Delta+1})$. Take $\varepsilon = \frac{1}{2^{\Delta+1}k}$, $t = \Delta + 1$. Assume that $N = N(\varepsilon, t)$, $T = T(\varepsilon, t)$ as defined in regularity lemma. Let $c = c(\Delta) = \max\{3T/\varepsilon, N\}$. Take $n > c|H| = 3T|H|/\varepsilon$. Next, we need to show that every 2-edge-coloring of $E(K_n)$ contains a monochromatic copy of H.

Let G be the red graph. Applying the regularity lemma to G with ε, t , we can obtain an ε -regular partition $V_0 \cup V_1 \cup \cdots \cup V_r$ for G with $|V_i| \ge (1 - \varepsilon) \frac{n}{r} \ge \frac{2|H|}{\varepsilon}$ for $i \in [r], t \le r \le T$. Consider a graph R on [r] such that $ij \in E(R)$ if and only if (V_i, V_j) is ε -regular. Then

$$|E(R)| \ge {r \choose 2} - \varepsilon r^2 \ge (1 - 3\varepsilon) {r \choose 2} > (1 - \frac{1}{k-1}) {r \choose 2}.$$

By Turán's theorem, R contains a copy of K_k .

Now color the edges of K_k in the following way: color ij red if $d(V_i, V_j)$ has red density $\geq \frac{1}{2}$, and color blue otherwise. (Note that all pairs are ε -regular.) By the definition of $k = r(K_{\Delta+1})$, there exists a monochromatic copy of $K_{\Delta+1}$ in this K_k . Then, $V_1, V_2, \ldots, V_{\Delta+1}$ are red(or blue) regular $(\Delta+1)$ -tuple and the pair (V_i, V_j) is ε -regular for $i, j \in [\Delta+1]$. Now we define graph G' as the red(or blue) graph on $V_1, \ldots, V_{\Delta+1}$. Then G' is a $(\Delta+1)$ -partite graph on $V_1, \ldots, V_{\Delta+1}$ such that (V_i, V_j) is (ε, d) -regular with $d \geq \frac{1}{2}$ and $|H| \leq \varepsilon |V_i|/2$. Apply the Graph embedding lemma to G' with $d = \frac{1}{2}$ and m = |H|, we can find a copy of H in G', which gives a monochromatic copy of H. Thus, there exists $c = c(\Delta)$ such that $r(H) \leq c|H|$.

Question: What about embedding large subgraphs or spanning subgraphs?

Definition 2.3. Let G be a graph. A disjoint pair (A, B) of vertices is (ε, d) -super-regular if it's ε -regular, $d(A, B) \ge d$ and $d(a, B) \ge (d - \varepsilon)|B|, d(b, A) \ge (d - \varepsilon)|A|$ for all $a \in A, b \in B$.

Lemma 2.4. Let $2\varepsilon \leq d \leq 1$ and $n \geq 2/\varepsilon$. Let G be a graph. If (A, B) is (ε, d) -super-regular in G with |A| = |B| = n, then G[A, B] contains a perfect matching.

Theorem 2.5 (Blow-up lemma (Komlós-Sárközy-Szemerédi)). Let $0 < \frac{1}{n} \ll \varepsilon \ll \frac{1}{r}, d_0, \frac{1}{\Delta} \le 1$. Suppose that H is an n-vertex graph satisfying vertex partition $X_1 \cup \cdots \cup X_r$ with $\Delta(H) \le \Delta$. Let G be a graph with partition $V_1 \cup \cdots \cup V_r$ such that $|V_i| = |X_i| = n$ and (V_i, V_j) is (ε, d') -super-regular for $d' \ge d$. Then we can embed H into G such that $\phi(X_i) = V_i$.

Remark 2.6.

On the proof of the Blow-up lemma:

- The proof of the embedding lemma (greedy embedding) can embed an ε-proportion of vertices.
- A careful randomized embedding (random greedy embedding) can embed an $(1-\varepsilon)$ -proportion of vertices, succeeding with high probability.
- If we run the randomized embedding carefully, we can apply Hall-type result for the remaining vertices and obtain full embedding (Blow-up lemma).

Exercise 2.7. Suppose $\varepsilon \ll d \le 1$. If (A, B) is (ε, d) -regular in G, then there exist $A' \subseteq A$, $B' \subseteq B$ such that $|A'| \ge (1 - \varepsilon)|A|$, $|B'| \ge (1 - \varepsilon)|B|$ and (A', B') is $(2\varepsilon, d)$ -super-regular in G.

Moving to hypergraph regularity

One of the main motivation of the hypergraph regularity is to understand/derive the hypergraph removal lemma. Recall that for $k \geq 2$, a k-uniform hypergraph H is a pair of (V, E), where V is a vertex set and E is a family of k-element subsets of V. For the convenience, we usually use k-graph to denote the k-uniform hypergraph.

Lemma 2.8 (Hypergraph removal lemma). For every r-graph H and $\varepsilon > 0$, there exists $\delta > 0$ such that every n-vertex r-graph with $< \delta n^{v(H)}$ copies of H can be made H-free by removing $< \varepsilon n^r$ edges.

Next we will give the following result, which is a corollary of the tetrahedron removal lemma.

Corollary 2.9. If G is a 3-graph such that every edge is contained in a unique tetrahedron (i.e., a clique on four vertices), then $e(G) = o(n^3)$.

Now let's prove Roth's theorem and Szemerédi's Theorem for 4-AP, the application of triangle removal lemma. We write 3-AP for 3-term arithmetic progression. We say that A is 3-AP-free if there are no $x, x + y, x + 2y \in A$ with $y \neq 0$.

Theorem 2.10 (Roth's theorem). Let $A \subseteq [N]$ be 3-AP-free. Then |A| = o(N).

Proof. Embed $A \subseteq \mathbb{Z}/M\mathbb{Z}$ with M = 2N + 1 (to avoid wraparounds). Since A is 3-AP-free in \mathbb{Z} , it is 3-AP-free in $\mathbb{Z}/M\mathbb{Z}$ as well.

Now, we construct a tripartite graph G whose parts X, Y, Z are all copies of $\mathbb{Z}/M\mathbb{Z}$. The edges of the graph are (since M is odd, we are allowed to divide by 2 in $\mathbb{Z}/M\mathbb{Z}$):

- $(x,y) \in X \times Y$ whenever $y x \in A$;
- $(y, z) \in Y \times Z$ whenever $z y \in A$;
- $(x,z) \in X \times Z$ whenever $(z-x)/2 \in A$.

In this graph, $(x, y, z) \in X \times Y \times Z$ is a triangle if and only if

$$y - x, \frac{z - x}{2}, z - y \in A.$$

The graph was designed so that the above three numbers form an arithmetic progression in the listed order. Since A is 3-AP-free, these three numbers must all be equal. So, every edge of G lies in a unique triangle, formed by setting the three numbers above to be equal.

The graph G has exactly 3M = 6N + 3 vertices and 3M|A| edges. As every edge lies in a unique triangle, G has exactly $3M|A|/3 = M|A| = o(M^3)$ triangles, and the triangle removal lemma says that G can be made triangle-free by removing $o(M^2)$ edges. However, as every edge of G is in a unique triangle, removing any edge destroys at most one triangle. That is, to make G triangle-free, one has to remove at least M|A| edges. Therefore, we have $M|A| = o(M^2)$, yielding |A| = o(M) = o(N) and we are done.

In fact, Roth's theorem is the first case of a famous result known as Szemerédi's theorem.

Theorem 2.11 (Szemerédi's theorem). For every fixed $k \geq 3$, every k-AP-free subset of [N] has size o(N).

Proof of Szemerédi's theorem for 4-AP. Let $A \subseteq [N]$ be 4-AP-free. Let M = 6N + 1. Then A is also a 4-AP-free subset in $\mathbb{Z}/M\mathbb{Z}$. Build a 4-partite 3-graph G with parts W, X, Y, Z, all of which are copies of [M]. Define edges of G as follows, where w, x, y, z range over elements of W, X, Y, Z, respectively:

$$wxy \in E(G) \iff 3w + 2x + y \in A,$$

$$wxz \in E(G) \iff 2w + x - z \in A,$$

$$wyz \in E(G) \iff w - y - 2z \in A,$$

$$xyz \in E(G) \iff -x - 2y - 3z \in A.$$

What is important here is that the ith expression does not contain the ith variable.

The vertices xyzw form a tetrahedron if and only if

$$3w + 2x + y$$
, $2w + x - z$, $w - y - 2z$, $-x - 2y - 3z \in A$.

However, these values form a 4-AP with common difference -x-y-z-w. Since A is 4-AP-free, the only tetrahedra in A are trivial 4-APs (those with common difference zero). For each triple $(w, x, y) \in W \times X \times Y$, there is exactly one $z \in \mathbb{Z}/M\mathbb{Z}$ such that x+y+z+w=0. Thus, every edge of the hypergraph lies in exactly one tetrahedron.

By Corollary 2.9, the number of edges in the hypergraph is $o(M^3)$. On the other hand, the number of edges is exactly $4M^2|A|$ (for example, for every $a \in A$, there are exactly M^2 triples $(w, x, y) \in (\mathbb{Z}/M\mathbb{Z})^3$ with 3w + 2x + y = a). Therefore |A| = o(M) = o(N).