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Lecture 1 The regularity method and the blowup lemma

As we all know, the regularity methods are some of the most powerful tools in combinatorics, which played

a central role in graph theory, functional Analysis, ergodic theory and so on. Here, we firstly get to know

one of the most classical applications of regularity lemma.

Lemma 1.1 (Triangle removal lemma). For every ω > 0, there exists ε = ε(ω) > 0 such that the following

holds for large n. If G is an n-vertex graph with at most εn3 triangles, then G can be made K3-free by

removing at most ωn2 edges.

Next we can obtain the general result by extending triangle to any graph H.

Lemma 1.2 (Graph removal lemma). For any graph H and any ω > 0, there exists ε = ε(ω) > 0 such that

any graph on n vertices which contains at most εnv(H) copies of H may be made H-free by removing at

most ωn2 edges.

Let G = (V,E) be a graph. For disjoint sets X,Y ⊆ V (G), the edge-density between X and Y is

d(X,Y ) =
e(X,Y )

⌜X ⌜⌜Y ⌜
.

Definition 1.3 (ω-regular). Given a graph G and some ω > 0, V1, V2 ⊆ V (G), V1 ⌐ V2 = ∅. A pair (V1, V2)

is called ω-regular if for any A ⊆ V1 and B ⊆ V2 with ⌜A⌜ ≥ ω⌜V1⌜, ⌜B⌜ ≥ ω⌜V2⌜, then ⌜d(A,B) ⋊ d(V1, V2)⌜ < ω.

In particular, for convenience, we call a pair (V1, V2) (ω, d)-regular if it is ω-regular and d(V1, V2) = d.

Exercise 1.4. Given ω, c > 0 and V ⌐1 ⊆ V1 and V ⌐2 ⊆ V2 with ⌜V ⌐
i
⌜ ≥ c⌜Vi⌜. If (V1, V2) is ω-regular, then (V

⌐
1 , V

⌐
2)

is ”also regular” (that is, max{2ω, ω⌜c}-regular).

Lemma 1.5 (K3-Counting lemma). For every ω > 0, the following holds for large n. Suppose that there

exist three disjoint vertex sets V1, V2, V3 with ⌜Vi⌜ ≥ n such that for any i, j ∈ [3], (Vi, Vj) is ω-regular and

d(Vi, Vj) ≥ 2ω. Then G[V1, V2, V3] contains at least (1 ⋊ 2ω)(d12 ⋊ ω)(d13 ⋊ ω)(d23 ⋊ ω)⌜V1⌜⌜V2⌜⌜V3⌜ triangles.
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Proof. Take V ⌐1 ⊆ V1 such that v ∈ V ⌐1 if and only if d(v, V2) < (d12⋊ω)⌜V2⌜ or d(v, V3) < (d13⋊ω)⌜V3⌜. Then we

claim that ⌜V ⌐1 ⌜ ≤ 2ω⌜V1⌜. Otherwise, if there exists a vertex set V12 ⊆ V1 with ω⌜V1⌜ vertices such that for any

v ∈ V12, d(v, V2) < (d12 ⋊ ω)⌜V2⌜, then we have d(V12, V2) <
(d12−ω)⌜V2⌜⌜V12⌜⌜V12⌜⌜V2⌜ = d12 ⋊ ω. But by the definition of ω-

regular, we have d(V12, V2) > d12⋊ω, a contradiction. Similarly, if there exists a vertex set V13 ⊆ V1 with ω⌜V1⌜

vertices such that for any v ∈ V13, d(v, V3) < (d13 ⋊ ω)⌜V3⌜, then we have d(V13, V3) <
(d13−ω)⌜V3⌜⌜V13⌜⌜V13⌜⌜V3⌜ = d13 ⋊ ω.

But by the definition of ω-regular, we have d(V13, V3) > d13 ⋊ ω, a contradiction. Thus, we derive that

⌜V ⌐1 ⌜ ≤ 2ω⌜V1⌜.

Now we consider the pair (N(u)⌐V2,N(u)⌐V3). Note that d(N(u)⌐V2,N(u)⌐V3) ∈ (d23⋊ω, d23+ω)

because N(u) ⌐ V2 ⊆ V2 and N(u) ⌐ V3 ⊆ V3. Take any vertex u ∈ V1 ∖ V
⌐
1 . Since ⌜N(u) ⌐ V2⌜ = d(u,V2) ≥

(d12 ⋊ ω)⌜V2⌜ ≥ ω⌜V2⌜ and ⌜N(u) ⌐ V3⌜ = d(u,V3) ≥ (d13 ⋊ ω)⌜V3⌜ ≥ ω⌜V3⌜, we have

e(N(u) ⌐ V2,N(u) ⌐ V3) ≥ (d23 ⋊ ω) ⋉ ⌜N(u) ⌐ V2⌜ ⋉ ⌜N(u) ⌐ V3⌜

≥ (d23 ⋊ ω)(d12 ⋊ ω)⌜V2⌜(d13 ⋊ ω)⌜V3⌜.

Sum over all u ∈ V1 ∖ V
⌐
1 , we get the number of K3 in G is at least

(1 ⋊ 2ω)⌜V1⌜ ⋉ (d23 ⋊ ω)(d12 ⋊ ω)⌜V2⌜(d13 ⋊ ω)⌜V3⌜ = (1 ⋊ 2ω)(d12 ⋊ ω)(d13 ⋊ ω)(d23 ⋊ ω)⌜V1⌜⌜V2⌜⌜V3⌜.

Remark 1.6. • Extend to Kr-counting in regular r-tuples by induction.

• Extend to F -counting in regular X (F )-tuples, where X (F ) is the chromatic number of G.

Theorem 1.7 (Regularity lemma). For every ω > 0, t ∈ N, there exist N = N(ω, t) and T = T (ω, t) such that

the following holds for every n ≥ N . Every n-vertex graph G admits an ω-regular partition V0 ∪ V1 ∪ ⋉ ⋉ ⋉ ∪ Vr

with t ≤ r ≤ T ,

1. ⌜Vi⌜ = ⌜Vj ⌜ for 1 ≤ i, j ≤ r,

2. ⌜V0⌜ ≤ ωn,

3. (Vi, Vj) is ω-regular for all but at most ωr2 pairs with i, j ∈ [r].

Remark 1.8. • Only meaningful for dense graphs.

• T = T (ω, t) is the upper bound of r, guaranteeing the ”quality” of partition, but T is very large, which

is 22
2⌐2

, where the height of the tower is a function of ω. Notice that the number of index is a function

of ω and Gowers showed that this is unavoidable.

• Sometimes (or most of the time), you want to choose t large.

Proof of triangle removal lemma. For every ω > 0, let ω be small and n be large. Suppose that G is a

graph with less than εn3 triangles.
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Apply the regularity lemma with t = 4⌜ω and ε = ω
3

128T 3 . Let V0∪V1∪⋉ ⋉ ⋉∪Vr be the ω⌜4-regular partition

with t ≤ r ≤ T .

Next, we will perform the following operation:

• remove all edges incident to V0;

• remove all edges between irregular pairs;

• remove all edges inside each Vi with i ∈ [r];

• remove all edges for (Vi, Vj) with d(Vi, Vj) < ω⌜2.

Thus, we removed at most

ωn

4
⋉ (n ⋊ 1) +

ωr2

4
⋉ ⌝

n ⋊ ⌜V0⌜

r
⌝

2

+ r ⋉ ⌝
(n ⋊ ⌜V0⌜)⌜r

2
⌝ + ⌝

r

2
⌝ ⋉

ω

2
⌝
n ⋊ ⌜V0⌜

r
⌝

2

≤
ωn

4
⋉ n +

ωr2

4
⋉ ⌝

n

r
⌝

2

+ r ⋉ ⌝
n

r
⌝

2

+ ⌝
r

2
⌝ ⋉

ω

2
⌝
n

r
⌝

2

=
ωn2

4
+
ωn2

4
+
n2

2r
+
ωn2

4

=
3ωn2

4
+
n2

2r
≤ ωn2

edges since r ≥ t = 4⌜ω.

Let G⌐ be the resulting graph. Now note that if G⌐ ⊇ K3, then there exist i, j, k such that this K3

belongs to Vi, Vj , Vk and (Vi, Vj), (Vi, Vk), (Vj , Vk) are all ω⌜4-regular with density ≥ ω⌜2. Then the K3-

Counting lemma implies that G⌐[Vi, Vj , Vk] has at least (1⋊ ω⌜2)(dij ⋊ ω⌜4)(djk ⋊ ω⌜4)(dik ⋊ ω⌜4)⌜Vi⌜⌜Vj ⌜⌜Vk⌜ ≥

(1 ⋊ ω⌜2) ⋉ (ω⌜4)3 ⋉ ⌝n−ωn⌜4
r
⌞
3
>

ω
3

128T 3n
3
= εn3 triangles, which contradicts with assumption. Thus, G⌐ is

K3-free, that is, we obtain a K3-free graph G⌐ by removing at most ωn2 edges from G.

Remark 1.9. Can we get better dependency between ω and ε? Improved bounds obtained by Fox (2011),

by iterating Frieze-Kannan weak regularity.

Other notable applications:

• RT (K4).

• If !(H) ≤!, then r(H) = O(⌜H ⌜).

• Alon-Yuster theorem (by applying Blow-up lemma).
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Application: Ramsey-Turán Theory

Question: If graph G is K4-free and ϑ(G) = o(n), then how many edges can G have? Szemerédi presented

the following result.

Theorem 1.10 (Szemerédi). For any ω > 0, there exists ϑ > 0 such that the following holds for large n. If

G is a K4-free n-vertex graph and ϑ(G) ≤ ϑn, then e(G) ≤ (18 + ω)n
2.

Proof. Let ϑ = 2ω2

25T , t =
5
ω
and regularize graph G with ω⌜5. Then we get the following partition:

• ⌜V0⌜ ≤ ωn⌜5,

• For all 1 ≤ i < j ≤ r, ⌜Vi⌜ = ⌜Vj ⌜,

• (Vi, Vj) is ω⌜5-regular for all but at most ωr2⌜5 pairs with i, j ∈ [r].

Claim 1.11. If (Vi, Vj) is ω-regular, then d(Vi, Vj) <
1
2 +

2ω
5 .

Proof. Suppose that d(Vi, Vj) ≥
1
2 +

2ω
5 . Let V ⌐

i
⊆ Vi be the vertices that have degree < (12 +

ω

5)⌜Vj ⌜ to Vj .

Then ⌜V ⌐
i
⌜ ≤

ω

5 ⌜Vi⌜. Thus, we have ⌜Vi ∖ V
⌐
i
⌜ ≥ (1 ⋊ ω

5)⌜Vi⌜ ≥ (1 ⋊
ω

5) ⋉ (1 ⋊
ω

5)
n

r
≥

n

2T > ϑn. Since ϑ(G) ≤ ϑn, we

can pick an edge uv in Vi ∖ V
⌐
i
. Since d(u,Vj), d(v, Vj) ≥ (

1
2 +

ω

5)⌜Vj ⌜, we get

⌜N(u) ⌐N(v) ⌐ Vj ⌜ ≥
2ω

5
⌜Vj ⌜ >

2ω

5
⋉ (1 ⋊

ω

5
)
n

r
>
ωn

5T
> ϑn.

Then we can pick an edge in N(u) ⌐N(v), giving a K4 ⊆ G, a contradiction.

Next we define a d-Reduced graph R: Let R be a graph on [r] such that ij ∈ E(R) if and only if

(Vi, Vj) is (ω, d
⌐
)-regular with d⌐ ≥ d.

Let d = 3ω⌜5 and R be the d-reduced graph of the partition (V1, . . . , Vr).

Claim 1.12. R is K3-free.

Proof. Suppose not. Without loss of generality, there are three vertices 1,2,3 from V1, V2, V3 forming a K3 ⊆

R. Let V ⌐1 ⊆ V1 be vertex set such that for any vertex v ∈ V ⌐1 , d(v, V2) < (d ⋊
ω

5)⌜V2⌜ or d(v, V3) < (d ⋊
ω

5)⌜V3⌜.

Then ⌜V ⌐1 ⌜ ≤ 2ω
5 ⌜V1⌜.

Now we take a vertex u ∈ V1 ∖ V
⌐
1 and let X = N(u) ⌐ V2, Y = N(u) ⌐ V3. Note that ⌜X ⌜ ≥ d(u,V2) ≥

(d⋊ ω

5)⌜V2⌜ ≥
2ω
5 ⌜V2⌜. Let X

⌐
⊆X be the vertex set such that for any vertex w ∈X ⌐, d(w,Y ) < (d⋊ ω)⌜Y ⌜. By

regularity, we get ⌜X ⌐⌜ ≤ ω⌜V2⌜, which implies that ⌜X ∖X ⌐⌜ ≥ ⌜X ⌜ ⋊ ω⌜V2⌜ ≥ ω⌜V2⌜.

Next we take any v2 ∈X ∖X
⌐, then

d(v2, Y ) ≥ ⌝d ⋊
ω

5
⌝ ⌜Y ⌜ ≥ ⌝d ⋊

ω

5
⌝ ⋉ ⌝d ⋊

ω

5
⌝ ⌜V3⌜ ≥ ⌝d ⋊

ω

5
⌝

2

⌝
n ⋊ ωn

5

r
⌝ ≥

2ω2

25T
n > ϑn.

Then we can pick an edge in N(v2, Y ) = N(vv2, V3), giving a K4 ⊆ G, a contradiction.
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Now we compute e(G) by counting the following five parts:

• count all edges incident to V0, which is at most ωn2
⌜5,

• count all edges between irregular pairs, which is at most ωr
2

5 ⋉ (
n

r
)
2
= ωn2

⌜5,

• count all edges inside each Vi with i ∈ [r], which is at most r ⋉ ⌞n⌜r2 ⌞ ≤ n
2

2r ≤
n
2

2t ,

• count all edges for (Vi, Vj) with d(Vi, Vj) < d, which is at most ⌞r2⌞ ⋉ d(
n

r
)
2
≤

d

2n
2,

• count all edges in R: Since R is K3-free, by Mantel’s theorem, e(R) ≤ r
2

4 and each edge has density

less than 1
2 +

2ω
5 . So the number of edges in R is at most r

2

4 ⋉ (
1
2 +

2ω
5 )(

n

r
)
2
= (

1
8 +

ω

10)n
2.

Adding all these up, we have

e(G) ≤ 2ωn2
⌜5 +

n2

2t
+
dn2

2
+ ⌝

1

8
+

ω

10
⌝n2
≤ ⌝

1

8
+ ω⌝n2.

Remark 1.13. • Bollobás-Erdős found a graph saying that the bound 1⌜8 is sharp.

• This theorem appeared before the Regularity lemma.

Exercise 1.14. Prove Erdős–Stone–Simonovits Theorem: Fix graph H with at least one edge. Then

ex(n,H) = ⌝1 ⋊
1

ϖ(H) ⋊ 1
+ o(1)⌝⌝

n

2
⌝.
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